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5 Abstract—Partial multi-view clustering has attracted various attentions from diverse fields. Most existingmethods adopt separate steps

6 to obtain unified representations and extract clustering indicators. This separatemanner prevents two learning processes to negotiate to

7 achieve optimal performance. In this paper, we propose the Joint Representation Learning and Clustering (JRLC) framework to address

8 this issue. The JRLC framework employs representationmatrices to extract view-specific clustering information directly from the

9 presence of partial similarity matrices, and rotates them to learn a common probability label matrix simultaneously, which connects

10 representation learning and clustering seamlessly to achieve better clustering performance. Under the guidance of JRLC framework,

11 several new incompletemulti-view clusteringmethods can be developed by extending existing single-view graph-based representation

12 learningmethods. For illustration, within the framework, we propose two specificmethods, JRLCwith spectral embedding (JRLC-SE)

13 and JRLC via integrating nonnegative embedding and spectral embedding (JRLC-NS). Two iterative algorithmswith guaranteed

14 convergence are designed to solve the resultant optimization problems of JRLC-SE and JRLC-NS. Experimental results on various

15 datasets and news topic clustering application demonstrate the effectiveness of the proposed algorithms.

16 Index Terms—Representation learning, clustering, partial multi-view data, graph

Ç

17 1 INTRODUCTION

18 WITH the continuous increase of multi-view data, multi-
19 view learning has become into a hot research direction
20 in last decades [1], [2], [3], [4], [5], [6]. As an important task,
21 multi-view clustering [7], [8], [9], [10], [11] has been applied to
22 many scientific domains such as natural language processing,
23 computer vision and health informatics. Traditional multi-
24 view clustering assumes that each example of data appears in
25 all views. However, in real-world applications, it is often the
26 case that every view suffers from some data missing, which
27 results in partial multi-view data. For example, in cross-
28 language document grouping, documents have been trans-
29 lated into different languages representing multiple views.
30 However, not all documents are translated into each lan-
31 guage. Another example is web image retrieval. Not all web
32 images are associated with text descriptions and the image
33 itself may be inaccessible due to deletion or invalid url. More-
34 over, in disease diagnosis, there are usually different tests rep-
35 resenting multiple views, but it is often the case that some

36individuals would not like to take all tests. Such incomplete-
37ness makes it unaccessible to obtain the clustering results of
38all examples by applying traditional single-view or multi-
39view clustering methods on these data directly. Therefore,
40how to effectively cluster partial multi-view data becomes a
41practical and important problem.
42In recent years, incomplete multi-view clustering has
43received growing attention, and the existing incomplete
44multi-view clustering methods are mainly developed in three
45paradigms. The first paradigm is matrix factorization-based
46methods. As a pioneering work of matrix factorization-based
47methods, the approach proposed in [12] learns the representa-
48tions of both view-specific examples and complete examples
49simultaneously based on nonnegative matrix factorization,
50and thus in the learned latent subspace, all examples are
51homogeneously represented. Such strategy has also been
52adopted by works in [13], [14], [15]. One limitation of this
53strategy is that it requires each data appears in all views or
54only one view. For incomplete multi-view data with more
55than two views, one very common case is that there exist
56examples presenting onmore than one view but not all views.
57To handle incomplete multi-view data with arbitrary views,
58some weighted matrix factorization-based methods have
59been proposed. The approaches proposed in [16], [17]
60introduce a diagonal weight matrix for each view, which dis-
61tinguishes its present samples frommissing samples. Further-
62more, the works in [18], [19] introduce a weight matrix for
63each viewwhich distinguishes its certain elements frommiss-
64ing elements. The second paradigm is kernel-based methods.
65The work in [20] focuses on the two-view data and proposes
66to construct a full kernel on an incomplete viewwith the help
67of another complete view. The approach proposed in [21] pre-
68dicts the missing rows and columns of kernel matrices by
69modeling both within-view and between-view relationships

� Wenzhang Zhuge, Hong Tao, Tingjin Luo, and Chenping Hou are with the
College of Liberal Arts and Science, National University of Defense Tech-
nology, Changsha 410073, China. E-mail: zgwznudt@yeah.net, {taohong.
nudt, hcpnudt}@hotmail.com, tingjinluo@gmail.com.

� Ling-Li Zeng is with the College of Mechatronics and Automation,
National University of Defense Technology, Changsha 410073, China.
E-mail: lingl.zeng@gmail.com.

� Dongyun Yi is with the School of Mathematics and Computing Science,
Hunan First Normal University, Changsha 410205, China and also with
the College of Liberal Arts and Science, National University of Defense
Technology, Changsha 410073, China. E-mail: dongyun.yi@gmail.com.

Manuscript received 1 Mar. 2020; revised 16 Sept. 2020; accepted 27 Sept. 2020.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Chenping Hou and Tingjin Luo.)
Recommended for acceptance by Y. Xia.
Digital Object Identifier no. 10.1109/TKDE.2020.3028422

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

1041-4347� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0924-5683
https://orcid.org/0000-0002-0924-5683
https://orcid.org/0000-0002-0924-5683
https://orcid.org/0000-0002-0924-5683
https://orcid.org/0000-0002-0924-5683
https://orcid.org/0000-0002-4328-4627
https://orcid.org/0000-0002-4328-4627
https://orcid.org/0000-0002-4328-4627
https://orcid.org/0000-0002-4328-4627
https://orcid.org/0000-0002-4328-4627
https://orcid.org/0000-0002-0515-256X
https://orcid.org/0000-0002-0515-256X
https://orcid.org/0000-0002-0515-256X
https://orcid.org/0000-0002-0515-256X
https://orcid.org/0000-0002-0515-256X
https://orcid.org/0000-0002-9335-0469
https://orcid.org/0000-0002-9335-0469
https://orcid.org/0000-0002-9335-0469
https://orcid.org/0000-0002-9335-0469
https://orcid.org/0000-0002-9335-0469
mailto:zgwznudt@yeah.net
mailto:taohong.nudt@hotmail.com
mailto:taohong.nudt@hotmail.com
mailto:hcpnudt@hotmail.com
mailto:tingjinluo@gmail.com
mailto:lingl.zeng@gmail.com
mailto:dongyun.yi@gmail.com


70 among kernel values. Based on multiple kernel k-means and
71 mutual kernel completion, the work in [22] jointly performs
72 kernel imputation and common representation learning. The
73 third paradigm is graph-based methods. After filling in the
74 missing entries of graph matrices with the average of the col-
75 umns, the work in [23] adopts a simple co-training strategy to
76 recover view-specific representations of missing samples and
77 learn common representations. Based on self-representation
78 principle, the approach proposed in [24] integrates the partial
79 graph construction and common representation learning.
80 After filling in the missing entries of each similarity matrix
81 with the average of corresponding certain elements, the work
82 in [25] learns the views weights to combine a common graph
83 matrix by analyzing the relation between perturbation risk
84 bounds and the fusion result. Besides, deep methods such
85 as [26], [27], [28] have achieved improved performance in
86 matrix completion, which show the potential to tackle incom-
87 pletemulti-view clustering problem.
88 Although the above-mentioned incomplete multi-view
89 clustering methods have achieved convincing results in
90 some applications, their performance can be further
91 improved due to the following reasons. Matrix factorization-
92 based methods are essentially linear, and thus cannot well
93 reveal the non-linear relation between the data and their rep-
94 resentations, which limits their learning ability. For example,
95 there are some 2-dimensional data which form a helical seg-
96 ment in order, and we want to obtain their 1-dimensional
97 representations which maintain the order in the helical seg-
98 ment. As a linear method, matrix factorization cannot deal
99 with such task well. Kernel-based and graph-based methods

100 can explore the non-linear relationships among data, how-
101 ever, most of them involve completion processes, and thus
102 introduce uncertain information, whichmay lead to a perfor-
103 mance degradation especially when missing rate is large.
104 Moreover, the above-mentioned methods share a drawback
105 that they disconnect the processes of representation learning
106 and clustering, and this separate manner prevents two learn-
107 ing processes from negotiating with each other to achieve
108 optimal solution.
109 In this paper, we propose a new graph-based incomplete
110 multi-view clustering framework, namely Joint Representa-
111 tion Learning andClustering (JRLC), to address the aforemen-
112 tioned issues. Based on partial similarity matrices, JRLC
113 learns view-specific representation matrices and a common
114 probability label matrix simultaneously. Specifically, JRLC
115 employs representation matrices to take part in the recon-
116 struction of certain elements of the partial similarity matrices,
117 which enables them to capture the view-specific clustering
118 information. Besides, a probability co-regularization term is
119 designed in JRLC to extract explicit and common clustering
120 results for all data points from these representation matrices,
121 which in turnmakes the clustering results guide the represen-
122 tation learning on each view. By this way, JRLC connects the
123 representation learning and clustering processes seamlessly,
124 with the aim to achieve better clustering performance.
125 Moreover, we analyze several existing single-view graph-
126 based representation learning methods and explain how
127 JRLC extends them to design new incomplete multi-view
128 clustering methods. To validate the effectiveness of JRLC,
129 we introduce two specific methods, i.e., JRLC with spectral
130 embedding (JRLC-SE) and JRLC via integrating nonnegative

131embedding and spectral embedding (JRLC-NS). Efficient
132algorithms with proved convergence are developed to solve
133the optimization problems of JRLC-SE and JRLC-NS. The
134performance of the proposed algorithms are verified by sys-
135tematical experimental results on eight multi-view datasets
136and in the news topic clustering application. As indicated,
137the proposed algorithms significantly outperform the com-
138pared state-of-the-art incomplete multi-view clustering
139methods.
140This work extends our original conference paper [29] in a
141substantial way. Compared with the conference paper, its
142significant improvement can be summarized in the follow-
143ing aspects: 1) We propose JRLC framework for incomplete
144multi-view clustering, which includes the method proposed
145in [29] as a special case JRLC-SE. Under the guidance of the
146framework, several new incomplete multi-view clustering
147methods can be designed based on existing single-view
148graph-based methods. 2) By inheriting the merits of both
149nonnegative embedding and spectral embedding, we intro-
150duce another specific method JRLC-NS within the JRLC
151framework, which achieves comparable or better clustering
152performance than JRLC-SE in most cases. 3) We propose a
153general algorithm to solve JRLC framework. Based on the
154general algorithm, two iterative algorithms are developed
155to solve the resultant optimization problems of JRLC-SE
156and JRLC-NS, and their convergence behaviors are theoreti-
157cally analyzed. 4) We conduct comprehensive experiments
158and news topic clustering application to demonstrate the
159effectiveness of the proposed algorithms.
160The rest of the paper is organized as follows. Section 2
161introduces the problem setting and briefly reviews three
162related works. The formulation, generalization and optimi-
163zation of JRLC framework are introduced in Section 3. Two
164methods JRLC-SE and JRLC-NS are introduced in Section 4.
165Experimental results are displayed in Section 5, followed by
166the application to news topic clustering in Section 6. Finally,
167we conclude this paper in Section 7.

1682 BACKGROUND

169Throughout the paper, matrices and vectors are written as
170boldface uppercase letters and boldface lowercase letters,
171respectively. For a matrix M, its ith row and ði; jÞth element
172are denoted by mi and mij, respectively. The transpose, the
173trace and Frobenius norm of matrix M are denoted by MT ,
174trðMÞ and jjMjjF , respectively. MðvÞ denotes the vth view
175representations of M. CM and CðvÞM denote the constraints of
176M and MðvÞ, respectively. The 2-norm of a vector mi is
177denoted by jjmijj. IC denotes a C � C-size identity matrix.
1781d denotes a d-dimensional vector and its elements are all 1.
179We list the notations in Table 1.

1802.1 Problem Setting

181Given a dataset X ¼ ½x1; . . . ; xn� 2 Rn�d with n instances
182sampled from V views, where xi 2 R1�d is the ith instance.
183Each instance has V representations, i.e., xi ¼ ½xð1Þi ; . . . ; x

ðV Þ
i �,

184where x
ðvÞ
i 2 R1�dðvÞ is the ith sample of the vth view and d ¼

185
PV

v¼1 d
ðvÞ. XðvÞ ¼ ½xðvÞ1 ; . . . ; xðvÞn � collects the samples of the vth

186view and X ¼ ½Xð1Þ; . . . ;XðV Þ�.
187In the incomplete multi-view setting, each x

ðvÞ
i can be

188missing. Incomplete multi-view clustering aims to cluster
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189 the n instances into C clusters by integrating all incomplete
190 views. For each view, a diagonal indicator matrix OðvÞ 2
191 f0; 1gn�n is defined as

o
ðvÞ
ii ¼ 1; if x

ðvÞ
i appears in the v-th view

0; otherwise

�
: (1)193193

194

195 2.2 Related Works

196 Incomplete Multi-View Learning via Matrix Factorization. Most
197 existing incomplete multi-view clustering methods [12],
198 [13], [17], [18], [19] are based on matrix factorization. There
199 are mainly two separate steps of these methods: First, they
200 factorize each XðvÞ into a common latent feature matrix F 2
201 Rn�C by solving the following problem

min
F;UðvÞ

XV
v¼1

½jjQðvÞ � ðXðvÞ � FUðvÞÞjj2F þCðF;UðvÞÞ�

s:t: F 2 CF ;UðvÞ 2 CðvÞU ; ð8vÞ;
(2)

203203

204 where QðvÞ 2 f0; 1gn�dðvÞ identifies the certain elements of
205 XðvÞ, � denotes element-wise product between two matrices,
206 UðvÞ 2 RdðvÞ�C is the projection matrix of vth view, CðF;UðvÞÞ
207 is the regularization term, and CF and CðvÞU are the constraints
208 of F and UðvÞ, respectively. These matrix factorization-based
209 methods distinguish from each other by employing differ-
210 ent regularization terms and constraints. Second, they apply
211 a post-processing algorithm such as K-means on F to obtain
212 the clustering indicators.
213 Incomplete Multiple Kernel K-Means Algorithm With Mutual
214 Kernel Completion (IMKK-MKC). IMKK-MKC is an absent
215 multiple kernel k-means algorithm [22], which integrates
216 imputation and representation learning into a single optimi-
217 zation procedure. Based on the incomplete multiple kernels
218 fKðvÞgVv¼1 where KðvÞ 2 Rn�n, IMKK-MKC imputes the miss-
219 ing entries of fKðvÞgVv¼1 and learns a common representation

220matrix F 2 Rn�C together with a view weight vector bb ¼
221½b1; . . . ;bV �T 2 RV simultaneously. The optimization prob-
222lem can be written as

min
G

tr½KðI� FFT Þ� þ �

2

XV
v¼1

jjKðvÞ �
X
j6¼v

bjK
ðjÞjj2F

s:t: FFT ¼ IC;bb50;bbT1V ¼ 1;K ¼
XV
v¼1

b2
vK

ðvÞ;

KðvÞðpðvÞ;pðvÞÞ ¼ K
ðvÞ
V ; ð8vÞ;

(3)

224224

225where G ¼ fF;bb; fKðvÞgVv¼1g collects all uncertain variables,
226pðvÞ is the present sample indices of the vth view, K

ðvÞ
V

227denotes the kernel sub-matrix computed with vth view
228present samples, K 2 Rn�n is the common kernel, and � >
2290 is a balanced parameter. KðvÞðpðvÞ;pðvÞÞ ¼ K

ðvÞ
V ensures that

230KðvÞ maintains the known entries.
231Perturbation-Oriented Incomplete Multi-View Clustering
232(PIC). PIC is a graph-based incomplete multi-view cluster-
233ing method [25]. After constructing partial graph matrices
234fSðvÞgVv¼1 on each view, PIC imputes the missing entries of
235each SðvÞ 2 Rn�n by mean of corresponding certain entries
236of other graph matrices. Then based on the Laplacian matri-
237ces fLðvÞgVv¼1 of completed graph matrices, PIC aims to learn
238a view weight vector bb ¼ ½b1; . . . ;bV �T 2 RV to obtain a con-
239sensus Laplacian matrix L� 2 Rn�n. By analyzing the rela-
240tion between perturbation risk bounds and the fusion
241result, the optimization problem can be written as

min
bb;L�

XV
v¼1

jjL�FðvÞ � FðvÞSðvÞjj2F þ �bbTLWbb

s:t: L� ¼
XV
v¼1

bvL
ðvÞ;bb50;bbT1V ¼ 1;

(4)

243243

244where � > 0 is a parameter. SðvÞ 2 RC�C is a diagonal
245matrix formed by the C largest eigenvalues of LðvÞ, and the
246corresponding C eigenvectors are collected by FðvÞ 2 Rn�C .
247LW is the Laplacian matrix of W 2 RV�V and elements of W
248measure the similarity between paired of views based on
249their largest canonical angle. Lastly, PIC applies spectral
250clustering on L� to obtain the clustering results.

2513 PROPOSED FRAMEWORK

252In this section, we first introduce the formulation of JRLC
253framework. Then we explain the generalization of JRLC.
254Lastly, we propose a general algorithm for optimization.

2553.1 Formulation

256To disclose the non-linear structure and utilize the comple-
257mentary information of multiple views, we construct an
258undirected weighted graph SðvÞ 2 Rn�n on each view accord-
259ing to pairwise similarity of fxðvÞi gni¼1. Since some samples
260can bemissing, s

ðvÞ
ij is calculated by

s
ðvÞ
ij ¼ fðxðvÞi ; x

ðvÞ
j Þ; if o

ðvÞ
ii o

ðvÞ
jj ¼ 1

Q; otherwise

�
; (5)

262262

263where fðxðvÞi ; x
ðvÞ
j Þ is a similarity calculation method such

264as [30], [31], andQ denotes the information of s
ðvÞ
ij is missing.

TABLE 1
Summary of Notations

C Number of clusters

d Dimension of original data

dðvÞ Dimension of the vth view

n Data size

nðvÞ The vth view present data size

V Number of views

bb ¼ ½b1; . . . ; bV �T 2 ½0; 1�V The view weight vector

F ¼ ½f1; . . . ; fn� 2 Rn�C The common representations

FðvÞ ¼ ½fðvÞ1 ; . . . ; fðvÞn � 2 Rn�C The vth view representations

HðvÞ ¼ ½hðvÞ
1 ; . . . ;hðvÞ

n � 2 Rn�C The vth view auxiliary matrix

LðvÞ 2 Rn�n The vth Laplacian matrix

L 2 Rn�n The unified Laplacian matrix

KðvÞ 2 Rn�n The vth view kernel matrix

K 2 Rn�n The unified kernel matrix

OðvÞ 2 f0; 1gn�n The vth view diagonal matrix

SðvÞ 2 Rn�n The vth view graph matrix

X ¼ ½x1; . . . ; xn� 2 Rn�d Data matrix

XðvÞ ¼ ½xðvÞ1 ; . . . ; xðvÞn � 2 Rn�dðvÞ The vth view data matrix

Y ¼ ½y1; . . . ; yn� 2 ½0; 1�n�C Cluster indicator matrix

RðvÞ 2 RC�C The vth view rotation matrix

ZHUGE ET AL.: JOINT REPRESENTATION LEARNING AND CLUSTERING: A FRAMEWORK FOR GROUPING PARTIAL MULTIVIEW DATA 3



265 According to Eq. (5), s
ðvÞ
ij can be estimated only if both x

ðvÞ
i

266 and x
ðvÞ
j are present. In our proposed framework, uncertain

267 Q has no effect and can be set with any value.
268 Based on partial similarity matrices fSðvÞgVv¼1 of multiple
269 views, to jointly perform representation learning and cluster-
270 ing, we learn view-specific representation matrices fFðvÞgVv¼1

271 and a common probability cluster indicator matrix Y ¼
272 ½y1; . . . ; yn� 2 ½0; 1�n�C simultaneously, where FðvÞ ¼ ½fðvÞ1 ; . . . ;
273 fðvÞn � 2 Rn�C is the vth view representation matrix. To extract
274 the view-specific clustering information, FðvÞ is used to recon-
275 struct the known entries of SðvÞ with the help of an auxiliary
276 matrix HðvÞ 2 Rn�C . And to obtain consensus clustering
277 results Y from fFðvÞgVv¼1, a rotation matrix RðvÞ 2 RC�C is
278 introduced for each FðvÞ. As a result, the objective of JRLC
279 framework can be concluded as

min
2C

XV
v¼1

LðSðvÞjFðvÞ;HðvÞÞ þ RðY; fFðvÞ;RðvÞgVv¼1Þ; (6)

281281

282 where ¼ ffFðvÞ;HðvÞ;RðvÞgVv¼1;Yg collects all uncertain
283 variables; LðSðvÞjFðvÞ;HðvÞÞ is reconstruction loss term of
284 the vth view graph matrix SðvÞ; RðY; fFðvÞ;RðvÞgVv¼1Þ is a
285 co-regularization term. The first term enables representation
286 learning to capture view-specific information, while the sec-
287 ond term gives common and explicit clustering results and
288 prompts the clustering results to guide view-specific repre-
289 sentation learning.
290 To obtain the clustering information of the vth view, we
291 utilize �FðvÞðHðvÞÞT to reconstruct SðvÞ, where � > 0 is a scal-
292 ing factor. And to avoid introducing uncertain information,
293 only nðvÞ � nðvÞ certain elements of SðvÞ are approximated
294 with the help of OðvÞ, where nðvÞ ¼ Pn

i¼1 o
ðvÞ
ii is the number

295 of the vth view present samples. Therefore, the objective of
296 LðSðvÞjFðvÞ;HðvÞÞ can be formulated as

min
FðvÞ2CðvÞ

F
;HðvÞ2CðvÞ

H

jjOðvÞðSðvÞ � �FðvÞðHðvÞÞT ÞOðvÞjj2F ; (7)

298298

299 where CðvÞF and CðvÞH are the constraints of FðvÞ andHðvÞ, respec-
300 tively. By utilizing different combinations of CðvÞF and CðvÞH , the
301 reconstruction of SðvÞ can be implemented in a variety of
302 ways. Based on Eq. (7), f

ðvÞ
i and h

ðvÞ
i take part in the recon-

303 struction only if o
ðvÞ
ii ¼ 1, and thus, the constraints should

focus on the corresponding rows.
304 To incorporate clustering and representation learning
305 based on the consensus principle, we learn a common prob-
306 ability label matrix Y together with representation matrices
307 fFðvÞgVv¼1. To establish reasonable interactions between

308 fFðvÞgVv¼1 and Y, rotation matrices fRðvÞgVv¼1 are employed to

309 help to extract the clustering results from fFðvÞgVv¼1, and C
310 coding vectors ftðcÞgCc¼1 are introduced to identify the C clas-
311 ses. For the cth coding vector tðcÞ 2 f0; 1g1�C , only its cth ele-
312 ment is equal to 1 and the other ones are 0. The probability
313 co-regularization termRðY; fFðvÞ;RðvÞgVv¼1Þ is formulated as

min
Y;fFðvÞ;RðvÞgV

Xn
i¼1

XC
c¼1

ðyicÞg
XV
v¼1

o
ðvÞ
ii jjtðcÞ � f

ðvÞ
i RðvÞjj2

s:t: Y50;Y1C ¼ 1n; ðRðvÞÞTRðvÞ ¼ IC; ð8vÞ;
(8)

315315

316 where g51 is an adaptive parameter. From Eq. (8), we can
317 observe that f

ðvÞ
i affects yi and RðvÞ only if o

ðvÞ
ii ¼ 1. Eq. (8)

318generates a probability label matrix Y according to the rota-
319tion loss of rows of fFðvÞgVv¼1 to ftðcÞgCc¼1. When g ¼ 1, Eq. (8)
320can be regarded as a variant of classical procrustes average
321technique [32] which rotates rows of fFðvÞgVv¼1 to form a uni-
322fied binary label matrix. When g > 1, Eq. (8) has a weight-
323ing mechanism and each sample is weighted automatically
324according to clustering certainty

PC
c¼1ðyicÞg . The mechanism

325enables clearly clustered samples to play more important
326roles in the learning stage.
327By combining Eqs. (7) and (8), we propose JRLC frame-
328work as the following form

min
T

XV
v¼1

�Xn
i¼1

XC
c¼1

ðyicÞgoðvÞii jjtðcÞ � f
ðvÞ
i RðvÞjj2

þ jjOðvÞðSðvÞ � �FðvÞðHðvÞÞT ÞOðvÞjj2F
�

s:t: FðvÞ 2 CðvÞF ;HðvÞ 2 CðvÞH ; ðRðvÞÞTRðvÞ ¼ IC; ð8vÞ;
Y50;Y1C ¼ 1n:

(9)

330330

331The proposed JRLC requires the representation learning to
332meet demands of both view-specific structure information
333mining and clustering, with the aim of utilizing both diver-
334sity and consensus information of multiple views.
335Since the partial similarity matrices fSðvÞgVv¼1 are the
336inputs of the proposed JRLC framework, their quality will
337further influence the performance of JRLC. In general, the
338graph construction way is determined empirically based on
339types of datasets. Certainly, how to choose a suitable graph
340is still an open problem.

3413.2 Generalization of JRLC Framework

342In this subsection, we introduce how JRLC extends existing
343single-view graph-based representation learning methods
344to generate new incomplete multi-view clustering methods.
345Based on a similarity matrix S 2 Rn�n, how to learn a
346representation matrix F 2 Rn�C which contains the cluster-
347ing information has been studied by a number of previous
348works. If S is a normalized graph matrix, Normalized Spec-
349tral Clustering (NSC) [33] problem can be written as

min
F

jjS� FFT jj2F ; s:t: FTF ¼ IC: (10)

351351

352To inherit merit from nonnegative constraint, the optimiza-
353tion problem of symmetric nonnegative matrix factorization
354(SymNMF) in [34] is

min
F

jjS� FFT jj2F ; s:t: F50: (11)

356356

357Furthermore, left-stochastic decomposition (LSD) in [35]
358requires F to be a probability matrix, and the problem is

min
F

jjS� �FFT jj2F ; s:t: F50; F1C ¼ 1n; (12)

360360

361where � > 0 is a scaling parameter. To obtain merits from
362(10) and (11), F satisfies both orthogonal and nonnegative
363constraints in [36], and the optimization problem of orthog-
364onal nonnegative matrix factorization (ONMF) is

min
F

jjS� FFT jj2F ; s:t: F50; FTF ¼ IC: (13)
366366
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367 In [37], [38], orthogonal and nonnegative embedding (ONE)
368 proposes another way to combine (10) and (11), and the
369 optimization problem is

min
F;H

jjS� FHT jj2F ; s:t: F50;HTH ¼ IC; (14)

371371

372 whereH 2 Rn�C is an introduced variable matrix.
373 By analyzing the aforementioned single-view methods,
374 we propose to summarize them into the following objective

min
F2CF ;H2CH

jjS� �FHT jj2F ; (15)

376376

377 where CF and CH are the constraints of F andH.
378 By adjusting Eq. (15) to reconstruct the certain elements
379 of partial similarity matrices fSðvÞgVv¼1, we obtain Eq. (7).
380 Therefore, these single-view methods can be extended by
381 JRLC to generate new incomplete multi-view clustering
382 methods. Since methods within JRLC framework distin-
383 guish from each other by adopting different fCðvÞF ; CðvÞH gVv¼1,
384 we summarize them in Table 2.
385 The differences among these single-view representation
386 learning methods are inherited by corresponding methods
387 within JRLC framework. These single-view methods share
388 the common objective (15) and have different constraints.
389 NSC uses orthogonal constraint, which tries to reconstruct
390 the similarity matrix by a block-diagonal matrix. SymNMF
391 uses nonnegative constraint, which offers interpretability
392 that entries in the representation matrix directly correspond
393 to relationship between data points and clusters. Based on
394 SymNMF, LSD further requires the representation matrix to
395 be a cluster probability matrix, which makes it reflect the
396 final clustering result in amore accurate way. By introducing
397 the orthogonal and nonnegative constraints simultaneously,
398 ONMF can be regarded as a combination of NSC and
399 SymNMF, and thus the reconstruct graph matrix has a more
400 clear structure. As a relaxed version of ONMF, ONE inherits
401 its good property for representation learning and has low
402 complexity, and the introduced variable matrix makes the
403 reconstruction of the similarity matrix have more flexibility.
404 In multiple graph learning [38], the increased flexibility may
405 improve the clustering performance. Besides, by combining
406 different constraints, some new representation learning
407 methods can be generated.

408 3.3 Optimization

409 The problem (9) is not convex over all four groups of varia-
410 bles fFðvÞgVv¼1; fHðvÞgVv¼1; fRðvÞgVv¼1 and Y simultaneously.

411The problems of specific methods within JRLC framework
412can be solved by an alternative and iterative minimization
413strategy which updates one group of variables while fixes
414others. The updating rules of fRðvÞgVv¼1 and Y are standard for
415all specific methods, and the updating rules w.r.t fFðvÞgVv¼1

416and fHðvÞgVv¼1 vary according to fCðvÞF gVv¼1 and fCðvÞH gVv¼1,
417respectively.
418Update fRðvÞgVv¼1: With Y and fFðvÞ;HðvÞgVv¼1 fixed, the
419relations of multiple views are decoupled, and each RðvÞ can
420be updated by solving the following problem

min
ðRðvÞÞTRðvÞ¼IC

Xn
i¼1

o
ðvÞ
ii

XC
c¼1

ðyicÞg jjtðcÞ � f
ðvÞ
i RðvÞjj2: (16)

422422

423By removing constant terms, the minimum problem (16) is
424equivalent to the following problem

max
ðRðvÞÞTRðvÞ¼IC

tr½ðRðvÞÞT ðFðvÞÞTOðvÞG�; (17)

426426

427where G 2 Rn�C and its ith row gi ¼
PC

c¼1ðyicÞgtðcÞ. Since
428nðvÞ examples appears in the vth view, the corresponding
429nðvÞ rows of FðvÞ and G are collected by FVðvÞ 2 RnðvÞ�C

430and GVðvÞ 2 RnðvÞ�C
þ , respectively. It can be checked that

431ðFðvÞÞTOðvÞG ¼ ðFVðvÞÞTGVðvÞ. To update RðvÞ, we introduce
the following proposition.

432Proposition 1. Suppose the SVD of matrix ðFVðvÞÞTGVðvÞ is

433ðFVðvÞÞTGVðvÞ ¼ U
ðvÞ
R S

ðvÞ
R ðVðvÞ

R ÞT , then the optimal RðvÞ to the
434problem (17) is

RðvÞ ¼ U
ðvÞ
R ðVðvÞ

R ÞT : (18) 436436

437

438The detailed proofs of all propositions of this paper
439can be found in the Appendix, which can be found on
440the Computer Society Digital Library at http://doi.
441ieeecomputersociety.org/10.1109/TKDE.2020.3028422.
442Update Y:With fFðvÞ;HðvÞ;RðvÞgVv¼1 fixed, Y can be updated
443by solving the following n problems simultaneously and
444independently

min
yi50;yi1C¼1

XC
c¼1

ðyicÞg
XV
v¼1

o
ðvÞ
ii jjtðcÞ � f

ðvÞ
i RðvÞjj2: (19)

446446

447Denote qic ¼
PV

v¼1 o
ðvÞ
ii jjtðcÞ � f

ðvÞ
i RðvÞjj2, which is the ði; cÞth

448element of matrix Q 2 Rn�C . When g ¼ 1, the optimal solu-
449tion of (19) is

yij ¼< j ¼ argmin
c2½1;C�

qic > ; (20)

451451

452where function < � > is equal to 1 if the argument is true or
4530 otherwise. When g > 1, the Lagrangian function of the
454problem (19) is Lm ¼ PC

c¼1ðyicÞgqic � mðPC
c¼1 yic � 1Þ, where

455m is the Lagrange multiplier. Setting the derivative of Lm w.
456r.t yic to zero and combining the constraint

PC
c¼1 yic ¼ 1, we

457arrive at the closed-form solution of the problem (19)

yic ¼
�
qic

� 1
1�g

PC

c¼1

�
qic

� 1
1�g

: (21) 459459

460

TABLE 2
Summary of Some Previous Single-View Representation

Learning Methods and the Corresponding Extended
Versions Within JRLC Framework

Method fCðvÞF ; CðvÞH gVv¼1

NSC [33] ðFðvÞÞTOðvÞFðvÞ ¼ IC ,H
ðvÞ ¼ FðvÞ

SymNMF [34] FðvÞ50,HðvÞ ¼ FðvÞ

LSD [35] FðvÞ50, FðvÞ1C ¼ 1n,H
ðvÞ ¼ FðvÞ

ONMF [36] ðFðvÞÞTOðvÞFðvÞ ¼ IC , F
ðvÞ50,HðvÞ ¼ FðvÞ

ONE [37] FðvÞ50, ðHðvÞÞTOðvÞHðvÞ ¼ IC
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461 Update fFðvÞ;HðvÞgVv¼1: With fRðvÞgVv¼1 and Y fixed, after
462 removing constant terms, the problem (9) can be decoupled
463 into the following V problems

min J ðFðvÞ;HðvÞÞ
¼tr½ðFðvÞÞT �OðvÞDOðvÞFðvÞ � 2OðvÞGðRðvÞÞT ��
þ �2tr½ðFðvÞÞTOðvÞFðvÞðHðvÞÞTOðvÞHðvÞ�
� 2�tr½ðFðvÞÞTOðvÞðSðvÞÞTOðvÞHðvÞ�

s:t: FðvÞ 2 CðvÞF ;HðvÞ 2 CðvÞH ;

(22)

465465

466 where D 2 Rn�n
þ is a diagonal matrix with ði; iÞth element

467 dii ¼
PC

c¼1ðyicÞg . By adding different constraints CðvÞF and
468 CðvÞH , methods within JRLC framework apply different ways
469 to solve the problem (22).
470 Since the proposed (9) is solved in an alternative way, we
471 initialize RðvÞ ¼ IC and Y such that yic ¼ 1=C. FðvÞ and HðvÞ

472 are initialized according to the their explicit constraints. At
473 last, we resort to a decision function to assign the single
474 class label for each yi

yij ¼< j ¼ argmax
c2½1;C�

yic > : (23)

476476

477 In summary, the general procedure of JRLC framework is
478 listed in Algorithm 1.

479 Algorithm 1. Optimization of JRLC Framework

480 Input: Partial similarity matrices fSðvÞgVv¼1, indicator matrices
481 fOðvÞgVv¼1, cluster number C, parameters � and g.
482 Initialization: Ywith yic ¼ 1=C, RðvÞ ¼ IC , F

ðvÞ,HðvÞ.
483 while not converged do

484 1: Update fRðvÞgVv¼1 with Eq. (18).
485 2: Update fyigni¼1 with Eqs. (20) or (21).

486 3: Update fFðvÞ;HðvÞgVv¼1 by solving (22).
487 end while
488 Output: The discrete indicator matrix Ywith Eq. (23).

489 4 METHOD AND ALGORITHM

490 To illustrate theways of solvingmethodswithin JRLC frame-
491 work, we introduce two specific methods with correspond-
492 ing algorithms in this section.

493 4.1 JRLC With Spectral Embedding

494 The first method based on spectral embedding is named as
495 JRLC-SE, which is the extended version of NSC. We choose
496 JRLC-SE because NSC is the most classical method among
497 single-view representation learning methods introduced in
498 Section 3.2, and the corresponding constraints are

JRLC-SE : ðFðvÞÞTOðvÞFðvÞ ¼ IC;H
ðvÞ ¼ FðvÞ; ð8vÞ: (24)500500

501

502 Considering the constraints and removing the constant
503 terms, the objective of reconstruction loss term LðSðvÞjFðvÞ;
504 HðvÞÞ of JRLC-SE can be replaced by

min
ðFðvÞÞTOðvÞFðvÞ¼IC

�2�tr½ðFðvÞÞTOðvÞSðvÞOðvÞFðvÞ�: (25)
506506

507If SðvÞ satisfies OðvÞSðvÞOðvÞ1n ¼ OðvÞðSðvÞÞTOðvÞ1n ¼ OðvÞ1n,
508we can use 2�tr½ðFðvÞÞTLðvÞFðvÞ� to replace the objective
509of (25), where LðvÞ is the Laplacian of OðvÞSðvÞOðvÞ. Thus,
510LðSðvÞjFðvÞ;HðvÞÞ of JRLC-SE can be replaced by

min
ðFðvÞÞTOðvÞFðvÞ¼IC

�
Xn
i;j¼1

o
ðvÞ
ii s

ðvÞ
ij o

ðvÞ
jj jjfðvÞi � f

ðvÞ
j jj2: (26)

512512

513Therefore, JRLC-SE can be regarded as SRLC method pro-
514posed in our conference paper [29] under certain conditions.
515The algorithms for specific methods within JRLC frame-
516work distinguish from each other by solving problem (22)
517with different constraints. For JRLC-SE, sinceHðvÞ ¼ FðvÞ, we
518replaceHðvÞ with FðvÞ.
519Update fFðvÞgVv¼1: By analyzing Eqs. (22) and (24), it can be
520checked that only FVðvÞ needs to be optimized. Let SVðvÞ 2
521RnðvÞ�nðvÞ collect the nðvÞ � nðvÞ certain elements of SðvÞ. And
522DVðvÞ2 RnðvÞ�nðvÞ

þ collect the corresponding nðvÞ � nðvÞ elements
523of D. By removing the constant terms, the problem (22) with
524constraints (24) is equivalent to

min
ðFVðvÞÞT FVðvÞ¼IC

tr½ðFVðvÞÞT ðDVðvÞ � 2�SVðvÞÞFVðvÞ�

�2tr½ðFVðvÞÞTGVðvÞðRðvÞÞT �:
(27)

526526

527The minimization problem (27) is equivalent to the follow-
528ing maximization problem

max
ðFVðvÞÞT FVðvÞ¼IC

tr½ðFVðvÞÞT ðAðvÞFVðvÞ þ BðvÞÞ�; (28)

530530

531where AðvÞ ¼ aðvÞInðvÞ �DVðvÞ þ 2�SVðvÞ and BðvÞ ¼ 2GVðvÞ

532ðRðvÞÞT . aðvÞ is an arbitrary constant which ensures thatAðvÞ is
533a positive definite matrix. Motivated by [39], the problem
534(27) can be solved by the following iterative and alternative
535strategy

5361) Update CðvÞ ¼ 2AðvÞFVðvÞ þ BðvÞ 2 RnðvÞ�C ;
5372) Calculate FVðvÞ by solving the following problem

max
ðFVðvÞÞT FVðvÞ¼IC

tr½ðFVðvÞÞTCðvÞ�: (29)

539539

540According to Proposition 1, supposing that the com-

541pact SVD of CðvÞ ¼ U
ðvÞ
F S

ðvÞ
F ðVðvÞ

F ÞT , then the optimal

542FVðvÞ of problem (12) is FVðvÞ ¼ U
ðvÞ
F ðVðvÞ

F ÞT .
543To analyze the convergence behavior of above two steps,
544we introduce the following proposition.

545Proposition 2. The above two alternative and iterative steps will
546monotonically increase the objective of the problem (28) in each
547iteration until it converges to a stationary point of (28).

548The procedure of JRLC-SE is listed in Algorithm 2.
549Convergence Behavior. For the convergence behavior of
550Algorithm 2, we have the following proposition.

551Proposition 3. The iterative updating rules in Algorithm 2 will
552monotonically decrease the objective of the optimization prob-
553lem of JRLC-SE until convergence, which makes the solution be
554a stationary point of the problem of JRLC-SE when g > 1.

555Computational Complexity. In the following, we analyze the
556computational complexity of Algorithm 2. In each iteration,
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557 the computational complexity to update FðvÞ is OðtðnðvÞkC þ
558 nðvÞC2 þ C3ÞÞ, where t is the iteration times of inner loop to
559 solve the problem (27) and k is the number of neighbors of
560 partial similarity matrices; the computational complexity to
561 update RðvÞ is OðnðvÞC2 þ C3Þ; the computational complexity
562 to updateY isOðPV

v¼1 n
ðvÞC2Þ. In general,C 	 nðvÞ. The over-

563 all computational complexity is OðTtPV
v¼1 n

ðvÞðkþ CÞCÞ,
564 where T is the number of iterations of Algorithm 2.

565 Algorithm 2. Algorithm to Solve JRLC-SE

566 Input: Partial similarity matrices fSðvÞgVv¼1, indicator matrices
567 fOðvÞgVv¼1, cluster number C, parameters � and g.
568 Initialization: Ywith yic ¼ 1=C, RðvÞ ¼ IC , F

ðvÞ such that
569 ðFðvÞÞTOðvÞFðvÞ ¼ IC .
570 while not converged do

571 1: Update fFVðvÞgVv¼1 of fFðvÞgVv¼1 by solving (27).

572 2: Update fRðvÞgVv¼1 with Eq. (18).
573 3: Update fyigni¼1 with Eqs. (20) or (21).
574 end while
575 Output: The discrete indicator matrix Ywith Eq. (23).

576 4.2 JRLC via Integrating Nonnegative Embedding
577 and Spectral Embedding

578 The second method is named as JRLC-NS, which inherit the
579 merits of both nonnegative embedding and spectral embed-
580 ding. JRLC-NS is the extended version of ONE. We choose
581 JRLC-NE because ONE is the most advanced methods
582 among these methods introduced in Section 3.2. The identi-
583 fied constraints of JRLC-NS are

JRLC-NS : FðvÞ50; ðHðvÞÞTOðvÞHðvÞ ¼ IC; ð8vÞ: (30)
585585

586 With the help of scaling factor �, �f
ðvÞ
i RðvÞ can be more com-

587 parable with clustering indicator vectors tðcÞ.
588 Considering the constraints of JRLC-NS, we solve the
589 problem (22) with constraints (30) by updating FðvÞ and HðvÞ

590 in an alternative way.
591 Update fFðvÞgVv¼1: With HðvÞ fixed, it is easy to check that

592 only FVðvÞ of FðvÞ needs to be optimized. The problem (22)
593 with constraints (30) is equivalent to

min
FVðvÞ50

tr½ðFVðvÞÞT ðDVðvÞ þ �2InðvÞ ÞFVðvÞ�

�2tr½ðFVðvÞÞT ðGVðvÞðRðvÞÞT þ �SVðvÞHVðvÞÞ�;
(31)

595595

596 where HVðvÞ 2 RnðvÞ�C collects nðvÞ rows of HðvÞ correspond-
597 ing to the vth view present samples. Denote MðvÞ ¼ DVðvÞþ
598 �2InðvÞ 2 RnðvÞ�nðvÞ

þ and EðvÞ ¼ GVðvÞðRðvÞÞT þ �SVðvÞHVðvÞ 2
599 RnðvÞ�C . Since MðvÞ is a diagonal matrix, the nonnegative

quadratic programming problem (31) can be further

decoupled into the following nðvÞ � C subproblems ði ¼
1; . . . ; nðvÞ; c ¼ 1; . . . ; CÞ

min
f
VðvÞ
ic

50

m
ðvÞ
ii ðfVðvÞ

ic Þ2 � 2e
ðvÞ
ic f

VðvÞ
ic : (32)

Note that m
ðvÞ
ii 50, and considering the nonnegative con-

600 straint, the optimal solution of the problem (32) is

f
VðvÞ
ic ¼ max 0;

e
ðvÞ
ic

m
ðvÞ
ii

� �
: (33)

602602

603

604Update fHðvÞgVv¼1: With FðvÞ fixed, by considering the effect
605of removing OðvÞ and removing constant terms, the problem
606(22) with constraints (30) is equivalent to the following
607problem

max
ðHVðvÞÞTHVðvÞ¼IC

tr½ðHVðvÞÞT ðSVðvÞÞTFVðvÞ�: (34)

609609

610The problem (34) is similar to the problem (29). According to

611Proposition 1, supposing the compact SVD of ðSVðvÞÞTFVðvÞ ¼
612U

ðvÞ
H S

ðvÞ
H ðVðvÞ

H ÞT , then the solutionHVðvÞ of (34) is

HVðvÞ ¼ U
ðvÞ
H ðVðvÞ

H ÞT : (35)

613The procedure of JRLC-NS is listed in Algorithm 3.

614Algorithm 3. Algorithm to Solve JRLC-NS

615Input: Partial similarity matrices fSðvÞgVv¼1, indicator matrices
616fOðvÞgVv¼1, cluster number C, parameters � and g.
617Initialization: Y with yic ¼ 1=C, RðvÞ ¼ IC , HðvÞ such that
618ðHðvÞÞTOðvÞHðvÞ ¼ IC .
619while not converged do
6201: Update fFVðvÞgVv¼1 of fFðvÞgVv¼1 with Eq. (33).

6212: Update fHVðvÞgVv¼1 of fHðvÞgVv¼1 with Eq. (35).

6223: Update fRðvÞgVv¼1 with Eq. (18).
6234: Update fyigni¼1 with Eqs. (20) or (21).
624end while
625Output: The discrete indicator matrix Ywith Eq. (23).

626Convergency Behavior. For the convergence behavior of
627Algorithm 3, we have the following proposition.

628Proposition 4. The iterative updating rules in Algorithm 3 will
629monotonically decrease the objective of the optimization prob-
630lem of JRLC-NS until convergence, which makes the solution
631be a stationary point of the problem of JRLC-NS when g > 1.

632Computational Complexity. We analyze the computational
633complexity of Algorithm 3. In each iteration, the computa-
634tional complexity to update FðvÞ is OðnðvÞkC þ nðvÞC2Þ; the
635computational complexity to update HðvÞ is OðnðvÞkC þ
636nðvÞC2 þ C3Þ; the computational complexity to update RðvÞ

637and Y are OðnðvÞC2 þ C3Þ and OðPV
v¼1 n

ðvÞC2Þ, respectively.
638Since C 	 nðvÞ, the overall computational complexity is
639OðT PV

v¼1 n
ðvÞðkþ CÞCÞ, where T is number of iterations of

640Algorithm 3. Compared with Algorithm 2, there is no inner
641loop in Algorithm 3, which further improve its efficiency.

6425 EXPERIMENTS

643In this section, we conduct experiments to evaluate the per-
644formance of the proposed algorithms. First, we evaluate the
645effectiveness of JRLC framework by comparing JRLC-SE
646and JRLC-NS with some baselines. Second, we present
647experimental results about convergence and runtime. Third,
648we validate the effectiveness of the integration of represen-
649tation learning and clustering. Finally, the impacts of hyper-
650parameters are studied.
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651 5.1 Dataset Description

652 The experiments are conducted on 8 datasets, i.e., MSRC-
653 v1,1 Caltech7,2 Yale,3 ORL,4 Dights,5 Ionosphere,6 Forest,7

654 WebKB.8 The detailed descriptions of these datasets are
655 listed as follows.

656 1) MSRC-v1: MSRC-v1 consists of 240 images and is
657 divided into 8 categories. Following [40], 7 widely used
658 classes are selected, i.e., tree, building, airplane, cow, face,
659 car, bicycle, and each class has 30 images. Six features are
660 extracted, i.e., 1302CENTRIST, 256 Local Binary Pattern
661 (LBP), 48 Color Moment (CMT), 100 Histogram of
662 Oriented Gradient (HOG), 200 SIFT and 512 GIST.
663 2) Caltech7: Caltech101 includes 8677 objective images
664 belonging to 101 classes. Following [41], we select 7
665 categories, including Dolla-Bill, Faces, Garfield, Motor-
666 bikes, Snoopy, Stop-Sign and Windsor-Chair. The
667 selected subset with 441 images is named as Caltech7.
668 For each image, the same six kinds of features with
669 MSRC-v1 are extracted.
670 3) Digits: Digits is composed of 2,000 data points for 0
671 to 9 ten digit classes, and each class has 200 data
672 points. Six public features are available, i.e., 76 Four-
673 ier coefficients of the character shapes (FOU), 216
674 profile correlations (FAC), 64 Karhunen-love coeffi-
675 cients (KAR), 240 pixel averages in 2� 3 windows
676 (PIX), 47 Zernike moment (ZER) and 6 morphologi-
677 cal (MOR) features.
678 4) Yale: Yale contains 165 face images belonging to 15
679 persons, and each person has 11 images. For each
680 image, we extract 512 GIST, 256 LBP and 168 Pyra-
681 mid Histogram of Oriented Gradients (PHOG).
682 5) ORL: ORL is composed of 400 face images belonging
683 to 40 persons, and each person has 10 images. For
684 each image, we extract the same three kinds of fea-
685 tures with Yale.
686 6) Ionosphere: Ionosphere consists of a phased array of
687 16 high-frequency antennas and result in observa-
688 tions with 34 features. It includes 351 instances in
689 total which are classified into 225 ’Good’ instances
690 and 126 ’Bad’ instances. Following [42], the second
691 view is generated by reducing the dimensionality
692 from 34 to 25with PCA.
693 7) Forest: Forest is composed of multi-temporal remote
694 sensing data of a forested area [43]. It includes 523
695 instances belonging to 4 forest types, i.e., ’Sugi’ forest,
696 ’Hinoki’ forest, ’Mixed deciduous’ forest and ’Other’
697 non-forest land. Each instance has 9 features about
698 ASTER image bands and 18 features about predicted
699 spectral values.
700 8) WebKB: WebKB consists of 1051 web documents [44]
701 classified into 2 classes: 230 Course pages and 821
702 Non-Course pages. Each page has two representa-
703 tions: Fulltext with 2949 features describes the textual

704content on the web page, while Inlinks with 334 fea-
705tures records the anchor text on the hyperlinks point-
706ing to the pages.

7075.2 Experimental Setup

7085.2.1 Dataset Processing

709Since all these datasets are originally complete, to simulate
710the incomplete multi-view setting, some view samples of
711each data point are randomly removed. Concretely, for each
712x

ðvÞ
i , there is a probability to remove it. The probability can

713also be regarded as the incomplete example ratio (IER) of
714the dataset. In the experiments, we tune IER form 10 to
71550 percent with a step 10 percent. And for each data point
716xi, it is ensured that there is at least one x

ðvÞ
i remaining.

7175.2.2 Baselines and Experimental Environment

718In the experiments, we compare the proposed JRLC-SE and
719JRLC-NS with several state-of-the-art methods: Multiple
720Incomplete views Clustering (MIC) [16], Multi-view Learn-
721ingwith Incomplete Views (MVL-IV) [18], IncompleteMulti-
722modality Grouping (IMG) [13], Doubly Aligned Incomplete
723Multi-view Clustering (DAIMC) [17], Incomplete Multiple
724Kernel K-means Algorithm with Mutual Kernel Completion
725[22] (IMKK-MKC) and Perturbation-oriented Incomplete
726multi-view Clustering (PIC) [25]. Since the original IMG can
727only deal with two incomplete views, we extend it based on
728Eq. (3), and the extended version can be applied on data with
729any number of incomplete views. Besides, we compare our
730proposed methods with Matrix Completion by Deep Matrix
731Factorization (DMF) [28]. By apply DMF on the concatenated
732feature matrix of all views, we can obtain the completed
733concatenated feature matrix and a common representation
734matrix, and they corresponds to two baselines called DMF-F
735and DMF-R, respectively. Since all these baselines need post-
736processing to extract the clustering indicators, K-means is
737apply on the common representation matrix to obtain the
738clustering the results. We conduct experiments by MATLAB
739R2017a on a work station with Intel(R) Xecon(R) CPU
740E3-1245 v3(3.4 GHz), 32.0 GB RAM memory, and Windows
74110 operating system.

7425.2.3 Parameter Determination

743In the experiments, all hyper-parameters are determined by
744grid-search, and the clustering results of using the best tuned
745parameters are recorded. For baselines, we download the
746source codes from the authors’ websites and the searching
747ranges of the parameters are determined according to the cor-
748responding papers. For DMF, the number of nodes in input
749layer, hidden layer, and output layer are set as ½d; 10C;C�. For
750the proposed JRLC-SE and JRLC-NS, the partial similarity
751matrices are constructed by [30], the adaptive parameter g is
752tuned from 1.1 to 2.5 with a step 0.2, and the scaling factor � is
753tuned from in the range of 10 of -2 power to 2 power with a
754step 0.5. The neighbor number k of partial similarity matrix is
755fixed as 5 in this section. For all compared algorithms which
756adopt iterative optimization strategy, the stop criteria is

Jðt� 1Þ � JðtÞ
Jðt� 1Þ < 10�5; (36)

758758

1. https://www.microsoft.com/en-us/research/project/
2. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3. http://vision.ucsd.edu/content/yale-face-database.
4. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
5. https://archive.ics.uci.edu/ml/datasets/Multiple+Features
6. http://archive.ics.uci.edu/ml/datasets/Ionosphere.
7. https://archive.ics.uci.edu/ml/datasets/Forest+type+mapping
8. http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/.
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759 where JðtÞ is the objective value in the tth iteration. Since
760 the problem (28) is solved by an iterative strategy, its stop
761 criteria is (36) and its max iteration number is set as 20.

762 5.2.4 Evaluation Metric

763 The clustering performance is evaluated in terms of accu-
764 racy (ACC) and the normalized mutual information (NMI).
765 For a fair comparison, on each multi-view dataset, every
766 time we create incomplete datasets with different IERs of
767 missing samples and repeat 10 independent times. The
768 average result with standard deviation (STD) is reported.

769 5.3 Clustering Results Comparison

770 Tables 3 and 4 show the clustering comparisons of all ten
771 compared methods on eight datasets in incomplete multi-

772view setting w.r.t. ACC and NMI, respectively. According
773to results, we have the following observations.
774As IER increases, in terms of both ACC and NMI, the
775performance of all compared methods becomes worse in
776most cases, which is consistent with intuition.
777With the increment of IER, MIC suffers from more per-
778formance degeneration than other matrix factorization-
779based methods MVL-IV, IMG and DAIMC on datasets
780MSRC-v1, Caltech7, Dights and Forest. This might be
781because that MIC simply fills the missing samples of each
782view with the global feature average, which may lead to a
783deviation especially when IER is large.
784Comparing the results of MVL-IV, IMG and DAIMC,
785each of them achieves good performance on certain datasets
786but performs worse on other datasets. Since MVL-IV, IMG
787and DAIMC can all be categorized into Eq. (2), the possible

TABLE 3
ACC (%) Comparisons on 8 Datasets With Different IERs

Data set IER MIC MVL-IV IMG DAIMC DMF-F DMF-R IMKK-MKC PIC JRLC-SE JRLC-NS

10% 71.7(3.9)� 85.1(2.9)� 76.0(4.6)� 78.0(2.8)� 73.8(2.5)� 76.5(2.6)� 86.5(4.3)� 88.2(6.1)� 92.0(1.7)� 95.2(1.3)
20% 53.6(5.2)� 83.3(3.3)� 74.9(3.9)� 76.1(2.6)� 73.8(2.5)� 76.5(2.6)� 84.6(2.4)� 89.9(6.6)� 91.6(3.1)� 94.1(1.1)

MSRC-v1 30% 37.2(3.4)� 74.7(4.1)� 72.2(5.1)� 73.0(4.5)� 70.1(4.2)� 69.6(3.4)� 83.9(3.5)� 90.5(4.5)� 89.3(2.7)� 92.1(2.5)
40% 30.9(2.9)� 77.0(4.6)� 69.3(3.4)� 70.3(4.9)� 66.8(3.5)� 64.8(4.3)� 78.7(3.1)� 83.4(4.3)� 88.7(2.6)� 89.4(2.3)
50% 24.6(1.4)� 74.1(5.3)� 62.4(5.4)� 63.1(5.9)� 62.5(4.5)� 59.2(3.0)� 77.1(5.5)� 81.3(4.6)� 84.0(1.5)� 85.7(1.9)

10% 61.8(3.0)� 69.7(2.1)� 69.3(0.9)� 74.5(1.7)� 73.4(1.2)� 77.2(2.5)� 66.8(2.1)� 76.4(1.6)� 75.0(1.6)� 76.7(2.9)
20% 45.6(5.0)� 68.1(2.7)� 69.2(1.3)� 74.2(1.4)� 71.2(0.9)� 76.8(1.6)� 67.1(1.3)� 74.6(3.1)� 74.1(1.6)� 76.0(2.2)

Caltech7 30% 32.7(1.9)� 66.1(3.3)� 68.7(1.8)� 73.9(2.0)� 71.5(1.4)� 75.9(2.2)� 64.1(2.6)� 72.2(4.0)� 72.6(2.0)� 74.8(2.3)
40% 26.7(2.2)� 65.2(2.9)� 67.7(1.8)� 73.2(0.6)� 70.3(1.8)� 74.1(1.1)
 60.0(4.8)� 68.9(6.6)� 71.7(2.6)� 71.7(2.9)
50% 24.1(0.4)� 61.9(5.0)� 64.7(2.9)� 69.6(2.8)� 66.6(2.7)� 69.7(1.7)� 53.6(3.6)� 61.3(5.9)� 68.8(3.0)� 69.7(2.2)

10% 71.7(2.5)� 77.3(4.2)� 81.5(3.9)� 86.2(1.6)� 86.7(2.9)� 81.8(4.6)� 62.6(2.6)� 86.5(0.8)� 95.9(0.8)� 95.8(0.9)
20% 63.5(1.3)� 76.3(3.4)� 79.7(4.6)� 87.9(0.8)� 87.0(2.3)� 78.6(5.3)� 59.3(3.8)� 85.7(1.5)� 95.0(1.1)� 94.9(0.8)

Digits 30% 55.6(2.3)� 76.2(3.7)� 79.2(4.3)� 83.2(3.1)� 87.3(2.3)� 76.3(4.7)� 53.8(4.0)� 86.2(1.0)� 94.0(1.1)� 94.4(1.3)
40% 47.6(2.2)� 75.0(4.5)� 74.0(5.2)� 80.9(5.0)� 86.6(2.1)� 75.7(2.8)� 50.0(5.0)� 84.7(2.2)� 93.0(1.5)� 92.9(1.0)
50% 39.5(2.0)� 73.8(3.6)� 68.4(5.5)� 75.4(3.6)� 86.6(2.1)� 75.7(2.8)� 47.0(2.8)� 84.5(2.3)� 90.4(1.1)� 90.8(0.8)

10% 53.9(3.7)� 55.5(3.6)� 66.7(3.5)� 66.7(1.7)� 63.5(3.8)� 66.8(2.6)� 69.7(2.9)� 69.0(2.1)� 70.7(1.2)� 72.7(2.1)
20% 47.3(3.2)� 53.5(4.5)� 62.4(3.4)� 62.2(2.9)� 59.0(2.4)� 63.2(2.6)� 66.1(3.1)� 66.5(1.8)� 69.6(1.5)� 70.8(1.8)

Yale 30% 43.3(2.2)� 46.4(3.3)� 59.1(2.2)� 57.5(3.7)� 55.0(1.7)� 58.7(3.3)� 63.0(3.4)� 61.7(3.5)� 65.3(2.2)� 67.6(1.3)
40% 36.1(2.1)� 45.9(4.5)� 53.5(2.2)� 52.4(3.4)� 50.2(3.1)� 54.7(3.1)� 56.7(3.9)� 56.6(3.6)� 58.4(3.0)� 60.9(2.5)
50% 33.2(2.5)� 43.5(3.5)� 49.9(4.0)� 48.2(3.4)� 50.2(3.1)� 54.7(3.1)� 54.0(3.4)� 54.1(2.9)� 54.4(3.0)� 58.4(3.7)

10% 60.2(2.1)� 62.5(3.7)� 61.7(2.4)� 73.2(1.5)� 62.4(2.1)� 70.9(1.6)� 77.9(2.8)� 74.4(2.5)� 78.6(1.6)� 80.4(1.9)
20% 52.0(2.3)� 58.7(2.7)� 56.8(1.8)� 68.9(2.7)� 58.8(2.5)� 69.2(3.6)� 70.2(1.6)� 73.5(2.8)� 74.9(1.4)� 77.1(1.8)

ORL 30% 47.5(1.4)� 55.0(4.3)� 53.7(2.1)� 62.8(2.7)� 56.6(2.1)� 63.6(2.3)� 66.6(3.4)� 69.2(1.9)� 71.5(2.6)� 73.4(2.2)
40% 40.8(2.7)� 50.5(2.9)� 50.1(1.9)� 58.3(3.0)� 51.8(2.1)� 57.5(2.6)� 59.1(2.3)� 65.7(3.8)� 64.8(2.8)� 67.1(2.6)
50% 34.9(2.2)� 45.1(2.2)� 44.8(1.6)� 49.7(1.5)� 48.5(1.9)� 54.6(3.3)� 53.2(3.2)� 61.5(2.7)� 56.4(1.6)� 61.8(2.4)

10% 66.1(1.2)� 61.4(2.9)� 70.1(0.8)� 66.6(1.5)� 71.4(0.7)� 70.6(0.7)� 71.6(0.5)� 52.0(0.8)� 75.7(2.7)� 77.6(2.3)
20% 67.2(2.7)� 61.5(2.2)� 71.4(4.5)� 67.4(2.9)� 71.7(0.6)� 71.4(2.6)� 72.4(0.7)� 51.7(1.2)� 77.1(3.6)� 75.9(2.1)

Ionosphere 30% 65.4(1.3)� 62.1(2.8)� 69.5(2.4)� 65.4(4.1)� 71.6(1.2)� 69.9(1.1)� 73.0(0.7)� 52.4(0.7)� 77.1(3.7)� 74.8(1.6)
40% 66.6(3.1)� 61.9(3.7)� 71.2(3.3)� 64.9(4.2)� 71.2(1.2)� 69.6(1.3)� 74.0(1.5)� 51.9(1.2)� 77.0(4.4)� 75.8(3.7)
50% 66.1(2.6)� 61.4(5.3)� 74.8(2.3)� 61.9(2.8)� 71.8(1.0)� 70.0(2.0)� 73.6(1.3)� 51.8(1.0)� 75.6(3.8)� 74.4(2.2)

10% 68.7(5.1)� 68.2(8.9)� 77.6(0.8)� 79.6(1.4)� 78.5(0.4)� 78.4(0.6)� 78.4(1.2)� 83.3(0.9)� 86.3(1.0)� 85.5(1.2)
20% 67.8(4.7)� 68.7(7.4)� 76.7(0.7)� 78.3(1.4)� 78.6(0.7)� 78.6(0.9)� 76.6(1.3)� 83.2(1.1)� 85.5(0.8)� 85.0(0.9)

Forest 30% 66.1(10)� 68.7(2.5)� 77.0(1.1)� 77.6(2.3)� 77.9(0.8)� 78.5(1.0)� 74.5(1.6)� 83.4(0.6)� 85.6(1.2)� 85.0(1.0)
40% 59.0(6.7)� 62.3(8.8)� 77.0(0.9)� 74.4(1.4)� 78.1(0.3)� 78.5(0.8)� 71.1(1.7)� 83.4(1.2)� 84.3(1.4)� 84.8(1.4)
50% 51.3(1.5)� 60.9(11.7)� 76.5(1.1)� 72.5(1.7)� 78.2(0.6)� 78.4(0.7)� 71.1(3.6)� 82.9(1.3)� 84.4(1.9)
 83.2(1.7)

10% 79.1(1.4)� 81.3(9.5)� 74.4(1.0)� 78.1(0.6)� 70.4(2.8)� 83.7(4.5)� 72.7(2.7)� 78.3(1.3)� 87.5(1.3)� 87.6(1.0)
20% 79.0(1.1)� 75.7(8.6)� 75.9(1.6)� 78.6(1.1)� 72.2(1.8)� 84.9(4.4)� 76.9(3.2)� 78.7(2.3)� 87.8(1.5)� 86.4(1.8)

WebKB 30% 78.4(0.2)� 78.4(7.7)� 76.2(2.1)� 80.3(1.0)� 75.0(2.5)� 85.3(3.9)� 79.4(2.7)� 78.0(0.2)� 87.0(1.4)
 85.3(1.2)
40% 78.3(0.3)� 75.7(5.8)� 75.3(1.7)� 80.9(1.4)� 76.2(1.4)� 86.2(3.3)� 78.2(3.3)� 78.0(0.2)� 85.9(1.9)� 86.9(1.8)
50% 78.2(0.1)� 76.2(5.6)� 75.6(2.2)� 80.8(1.8)� 76.5(2.4)� 86.3(2.6)� 77.1(2.8)� 78.0(0.2)� 85.7(1.4)� 86.2(1.9)

win/tie/lose 40/0/0 39/1/0 39/1/0 36/4/0 38/2/0 31/8/1 37/3/0 31/9/0 14/24/2 -

STD (%) is in the parentheses. The first highest score is in bold. Symbols ’�/�/
’ denote that JRLC-NS is better/tied/worse than the corresponding method by the
paired t-test with confidence level 0.05, respectively. The win/tie/loss counts are reported in the last row.
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788 reason is that these methods adopt different regularization
789 terms or constraints, which makes them good at grouping
790 certain kind of data and poor at clustering the others.
791 DMF-F and DMF-R achieve comparable or even better
792 results than matrix factorization-based incomplete multi-
793 view clustering methods, and on some datasets such as Cal-
794 tech7 and WebKB, the advantages of DMF-R are significant.
795 That can be owing to that as a deep method, DMF-R can bet-
796 ter disclose the non-linear structure of data than traditional
797 matrix factorization-based methods.
798 IMKK-MKC and PIC achieve significantly better results
799 than matrix factorization-based methods on some datasets.
800 This might be because that kernel-based method IMKK-
801 MKC and graph-based method PIC can disclose the nonlin-
802 ear structure of data. However, IMKK-MKC and PIC
803 achieve the worst performance on some datasets, respec-
804 tively. The possible reason is that the completion of kernels

805or graph similarity matrices introduces uncertain informa-
806tion, which may degenerate the performance of their subse-
807quent clustering process.
808JRLC-SE and JRLC-NS achieve better or comparable per-
809formance than other methods do over all datasets in most
810cases as IER varies from 10 to 50 percent. This may be
811because that JRLC-SE and JRLC-NS integrate representation
812learning and clustering, which explore the underlying struc-
813ture of partial similarity matrices directly for clustering
814without introducing uncertain information. Compared with
815JRLC-SE, the performance of JRLC-NS achieves more con-
816siderable improvements in several datasets. It can be owing
817to that JRLC-NS inherits advantages of both nonnegative
818embedding and spectral embedding, which makes its recon-
819structed graph matrices have more clear structures than
820them of JRLC-SE. Besides, by learning different FðvÞ and
821HðvÞ, JRLC-NS enables fFðvÞgVv¼1 to pay more attention to

TABLE 4
NMI (%) Comparisons on 8 Datasets With Different IERs

Data set IER MIC MVL-IV IMG DAIMC DMF-F DMF-R IMKK-MKC PIC JRLC-SE JRLC-NS

10% 61.6(3.2)� 75.1(2.2)� 65.0(3.4)� 66.6(2.4)� 63.0(1.8)� 65.9(2.7)� 79.4(3.7)� 86.1(4.9)� 86.1(2.5)� 90.4(2.0)
20% 43.6(4.2)� 72.8(3.8)� 63.5(3.4)� 64.5(1.7)� 61.8(2.3)� 61.4(2.9)� 77.4(2.8)� 86.1(5.9)� 85.6(4.3)� 88.6(1.5)

MSRC-v1 30% 27.6(2.9)� 65.6(4.1)� 60.4(3.9)� 62.2(3.7)� 58.3(2.6)� 59.7(3.9)� 76.2(2.9)� 85.7(4.0)� 82.8(2.9)� 85.8(3.3)
40% 17.2(2.9)� 65.4(4.5)� 56.8(3.4)� 57.3(3.6)� 56.2(3.2)� 52.8(3.5)� 70.0(2.4)� 77.2(3.3)� 79.4(4.1)� 80.8(2.9)
50% 11.2(1.5)� 61.6(4.3)� 50.1(4.5)� 50.5(4.2)� 51.1(4.8)� 48.0(2.9)� 66.3(5.6)� 74.2(3.0)� 72.5(1.6)� 74.4(2.7)

10% 52.4(4.4)� 59.4(1.7)� 62.2(1.4)� 68.3(1.8)� 69.8(0.7)� 70.3(1.8)� 55.0(1.5)� 73.9(1.9)� 72.9(3.3)� 75.9(3.2)
20% 31.7(4.4)� 58.1(3.5)� 61.9(2.6)� 66.3(1.1)� 67.3(1.9)� 69.0(1.9)� 56.1(2.5)� 70.9(2.4)� 70.4(2.9)� 74.2(3.3)

Caltech7 30% 16.2(2.3)� 55.5(2.3)� 60.8(2.2)� 62.8(2.8)� 63.0(1.6)� 65.5(1.7)� 52.0(3.6)� 66.1(3.7)� 68.0(2.7)� 70.9(2.9)
40% 9.81(2.1)� 52.2(3.0)� 56.9(2.9)� 59.3(1.9)� 61.4(1.8)� 62.5(1.5)� 45.8(3.7)� 63.0(4.7)� 67.1(4.0)� 65.7(4.1)
50% 6.37(1.0)� 47.1(4.9)� 54.6(2.7)� 53.6(2.8)� 54.4(2.0)� 56.3(1.7)� 40.8(2.8)� 54.0(6.0)� 60.3(4.0)� 60.7(3.1)

10% 64.7(1.9)� 71.4(2.7)� 73.8(1.9)� 76.5(1.5)� 79.2(1.7)� 76.1(2.0)� 57.6(0.9)� 86.6(0.9)� 91.7(1.0)� 91.7(0.9)
20% 56.8(1.5)� 70.2(1.6)� 72.0(2.1)� 78.0(1.1)� 78.8(1.8)� 74.6(2.2)� 54.3(2.0)� 86.1(1.2)� 90.1(1.2)� 90.2(1.1)

Digits 30% 50.9(1.6)� 70.1(1.8)� 71.7(1.4)� 73.3(1.9)� 78.3(1.6)� 72.1(2.4)� 49.0(2.0)� 85.8(1.2)� 88.1(1.5)� 89.1(1.2)
40% 44.2(1.5)� 67.7(3.5)� 67.3(2.4)� 70.4(3.1)� 76.4(1.5)� 70.2(2.9)� 45.1(2.3)� 84.7(0.9)� 86.3(1.4)� 86.6(1.1)
50% 35.3(2.8)� 65.1(2.5)� 61.5(2.6)� 64.6(1.8)� 73.0(1.4)� 65.4(2.2)� 45.4(2.4)� 84.0(1.0)� 82.6(1.2)� 83.5(0.8)

10% 58.9(3.2)� 59.7(3.0)� 70.3(2.2)� 70.6(1.8)� 70.2(2.7)� 70.9(2.9)� 72.4(2.7)� 72.0(1.4)� 72.2(1.4)� 74.0(2.0)
20% 53.4(3.4)� 58.1(3.3)� 66.9(3.3)� 66.4(3.2)� 65.6(2.6)� 66.8(2.5)� 68.7(2.4)� 69.7(2.0)� 70.3(1.4)� 71.9(1.2)

Yale 30% 49.0(1.8)� 53.2(3.5)� 62.7(1.5)� 61.8(2.4)� 61.6(1.5)� 63.4(2.2)� 64.7(2.1)� 65.0(2.9)� 65.4(2.0)� 68.3(1.8)
40% 43.1(2.8)� 50.4(5.1)� 58.5(2.1)� 56.9(2.5)� 55.5(1.7)� 59.0(2.3)� 59.0(2.9)� 60.1(2.8)� 59.5(3.3)� 62.0(2.7)
50% 40.4(2.4)� 48.9(3.3)� 54.3(3.0)� 53.9(3.3)� 53.9(3.0)� 55.6(2.6)� 56.7(3.2)� 57.5(3.3)� 56.2(3.0)� 59.5(2.9)

10% 76.1(1.1)� 79.7(1.6)� 78.8(1.6)� 87.0(1.5)� 79.8(0.9)� 85.5(1.0)� 88.6(1.3)� 87.6(0.8)� 87.9(0.8)� 89.1(0.8)
20% 68.3(1.7)� 76.3(1.6)� 75.2(1.1)� 82.7(1.1)� 77.1(1.2)� 83.5(2.5)� 83.5(1.3)� 86.0(1.5)� 84.9(0.6)� 86.0(0.9)

ORL 30% 63.5(1.3)� 72.6(2.9)� 72.5(1.5)� 78.4(1.5)� 74.5(1.0)� 79.1(1.2)� 80.2(2.0)� 83.5(1.2)� 81.8(1.6)� 83.1(1.4)
40% 58.5(2.0)� 68.7(1.7)� 68.8(1.5)� 74.7(1.9)� 70.9(1.9)� 74.6(1.4)� 74.8(1.6)� 79.7(2.4)
 76.8(1.3)� 78.3(1.5)
50% 53.7(1.7)� 63.7(1.7)� 64.4(1.3)� 68.8(0.6)� 68.5(1.4)� 72.1(1.5)� 69.9(1.6)� 76.0(1.6)
 71.6(1.0)� 74.7(1.9)

10% 9.1(0.9)� 2.6(1.6)� 11.1(1.1)� 7.6(1.6)� 13.6(1.1)� 12.2(0.8)� 14.3(0.8)� 11.5(1.3)� 24.3(5.3)� 27.4(4.1)
20% 8.7(1.9)� 2.6(1.4)� 12.3(6.4)� 8.9(1.6)� 14.1(0.9)� 12.9(2.9)� 15.7(1.2)� 10.9(1.7)� 26.5(8.4)� 25.3(3.5)

Ionosphere 30% 6.7(1.2)� 3.2(1.9)� 9.7(2.0)� 7.4(3.7)� 13.8(1.7)� 11.4(1.7)� 16.8(1.7)� 12.6(1.8)� 26.9(6.5)� 22.9(3.7)
40% 6.1(2.9)� 3.3(2.0)� 10.8(5.3)� 7.1(3.5)� 13.1(1.5)� 10.5(1.9)� 18.6(3.1)� 10.8(2.1)� 26.6(7.1)� 22.6(5.1)
50% 5.0(2.3)� 3.7(3.9)� 16.0(4.3)� 3.6(2.0)� 13.9(1.6)� 12.0(3.5)� 18.1(2.6)� 11.2(1.6)� 24.9(6.2)� 21.7(3.3)

10% 45.3(2.5)� 42.0(7.6)� 53.0(0.8)� 55.3(2.5)� 53.8(0.6)� 53.9(0.8)� 53.1(1.4)� 62.0(1.1)� 64.7(1.8)
 63.0(2.2)
20% 44.0(3.7)� 41.9(7.2)� 52.0(0.5)� 52.8(2.2)� 54.2(0.9)� 54.3(1.3)� 50.5(1.8)� 61.4(1.6)� 63.7(1.2)� 62.5(1.5)

Forest 30% 44.6(5.8)� 39.5(5.1)� 52.4(0.8)� 52.0(2.4)� 53.6(0.7)� 53.7(1.6)� 47.7(2.2)� 61.4(0.7)� 63.8(2.2)
 62.4(1.5)
40% 36.2(5.1)� 31.9(8.1)� 52.1(1.0)� 46.8(2.6)� 53.4(0.6)� 53.5(1.0)� 43.9(1.7)� 61.2(1.7)� 62.3(2.0)� 62.6(2.3)
50% 30.0(1.4)� 32.8(11.3)� 51.7(1.2)� 45.1(3.1)� 53.8(0.5)� 53.3(1.2)� 44.2(4.8)� 60.0(2.1)� 61.7(2.8)
 60.0(2.3)

10% 11.3(3.8)� 24.7(17.5)� 5.8(4.1)� 6.18(3.6)� 0.8(0.2)� 36.2(7.5)� 10.2(4.0)� 3.5(5.9)� 39.6(4.7)� 41.5(3.0)
20% 10.6(3.4)� 11.4(12.5)� 5.4(1.4)� 5.6(4.2)� 2.0(0.7)� 35.3(9.3)� 17.7(6.7)� 3.9(8.1)� 39.8(4.6)� 37.7(5.7)

WebKB 30% 7.7(2.0)� 16.6(8.9)� 6.2(2.5)� 11.5(4.6)� 4.1(2.2)� 36.4(8.5)� 22.5(6.1)� 1.3(1.0)� 35.3(4.6)� 32.4(3.9)
40% 6.0(2.0)� 9.3(6.3)� 5.7(1.7)� 14.0(5.4)� 5.3(1.8)� 35.5(9.9)� 21.4(7.5)� 1.4(0.8)� 31.5(6.2)� 33.6(6.5)
50% 3.4(2.0)� 7.6(7.1)� 5.4(2.7)� 12.5(5.3)� 5.3(2.5)� 33.4(6.4)� 20.7(7.7)� 1.6(1.1)� 29.1(6.0)� 32.5(3.9)

win/tie/lose 40/0/0 40/0/0 40/0/0 40/0/0 40/0/0 34/6/0 37/3/0 26/12/2 16/21/3 -

(See the title of Table 1 for more information).
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822 seek the consistent clustering, thereby further improving
823 clustering performance.

824 5.4 Convergence Analysis and Time Comparison

825 In order to verify the convergence behaviors of the pro-
826 posed Algorithm 2 for JRLC-SE and Algorithm 3 for JRLC-
827 NS, we present their convergence behavior curves on data-
828 sets MSRC-v1 and Caltech7 with IER=50%. The conver-
829 gence behavior curves are displayed in Fig. 1.
830 As we can see from Fig. 1, both Algorithms 2 and 3 mono-
831 tonically decrease their corresponding objective values as
832 the iteration round increases and converge to a fixed value.
833 Additionally, as the iteration round increases, the objective
834 values of both JRLC-SE and JRLC-NS decrease fast, indicat-
835 ing Algorithms 2 and 3 have fast convergence property.
836 To demonstrate the efficiency of the proposed algorithms
837 to deal with incomplete multi-view data, we report runtime
838 comparisons on two datasets Digits and WebKB. Digits has
839 the largest data size while WebKB is with the largest
840 dimensionality. For every time, we create incomplete data
841 with IER=50%, and implement each method on it with pre-
842 determined parameters. The average results of 5 indepen-
843 dent times with STD are reported in Table 5.
844 From the results of Table 5, we have the following observa-
845 tions: 1) JRLC-NS and JRLC-SE spend less time than other
846 methods, because their optimization only have linear complex-
847 ityw.r.t. present data size and are irrelevantw.r.t. dimensional-
848 ity. Compared with JRLC-SE, JRLC-NS has no inner loop,
849 which further reduces the runtime. 2) PIC and IMKK-MKC
850 use less time than matrix factorization-based methods on
851 WebKB because they only have cubic complexity w.r.t. data
852 size. 3) MVL-IV takes less time than other matrix factorization-
853 based methods because it has linear complexity w.r.t. both
854 data size and dimensionality. 4) DMF-F and DMF-R cost more

855time than MVL-IV because DMF needs more number of
856iterations. 5) IMG spends the most time on Digits, because it
857constructs an adaptive graph matrix based on common repre-
858sentations in each iteration. 6) DAIMC costs the most time on
859WebKB, because it solves the continuous Sylvester equation in
860each iteration, which has cubic complexity w.r.t. dimensional-
861ity of each view.

8625.5 Ablation Test

863To demonstrate the effectiveness of integrating both repre-
864sentation learning and clustering processes, we compare
865JRLC-SE and JRLC-NS with SE+C and NS+C, respectively.

Fig. 1. Sensitivity analysis on parameters � and g.

TABLE 5
Computational Time (seconds) on 2 Datasets With IER=50%

Digits WebKB

MIC 365.1702(7.3071) 39.9132(11.529)
MVL-IV 6.3518(0.8086) 13.1667(3.8341)
IMG 741.2341(4.6199) 146.3718(13.247)
DAIMC 113.9044(6.6345) 196.8161(47.287)
DMF-F 52.1686(0.2251) 75.7302(0.3392)
DMF-R 51.2226(0.1988) 75.1241(0.2350)
IMKK-MKC 103.5268(3.6927) 3.7295(1.2187)
PIC 185.7268(1.8307) 3.0080(0.3263)
JRLC-SE 4.6706(0.2129) 0.6453(0.0645)
JRLC-NS 3.1948(0.1146) 0.3548(0.0388)

STD (seconds) is in the parentheses.

TABLE 6
ACC (%) and NMI (%) Comparisons on

8 Datasets With IER=25%

Dataset Merit SE+C JRLC-SE NS+C JRLC-NS

MSRC-v1
ACC 87.7(3.1)� 91.3(2.2) 85.7(2.1)� 93.0(1.2)
NMI 79.8(2.6)� 84.8(2.3) 77.9(2.6)� 87.2(2.2)

Caltech7
ACC 67.1(2.2)� 73.7(1.5) 66.0(2.9)� 74.9(2.1)
NMI 60.3(2.8)� 70.4(3.6) 59.3(3.9)� 72.4(2.8)

Digits
ACC 93.9(0.5)� 95.5(0.5) 92.3(0.8)� 94.9(0.8)
NMI 87.6(0.8)� 90.1(0.8) 85.5(1.1)� 89.5(1.0)

Yale
ACC 66.5(2.8)� 67.8(2.4) 66.8(2.9)� 69.4(2.0)
NMI 67.0(2.0)� 68.1(2.0) 66.5(1.8)� 69.8(1.8)

ORL
ACC 71.4(2.1)� 72.2(2.1) 71.9(1.3)� 75.2(1.3)
NMI 82.6(1.0)� 83.1(1.1) 82.7(0.7)� 84.2(1.2)

Ionosphere
ACC 69.4(4.1)� 78.0(3.4) 70.9(6.1)� 75.2(1.7)
NMI 14.5(4.5)� 28.5(5.0) 16.6(4.9)� 24.5(4.5)

Forest
ACC 75.9(6.7)� 85.6(0.8) 78.9(5.4)� 84.8(0.7)
NMI 52.6(6.2)� 63.9(1.6) 55.2(6.1)� 62.5(1.0)

WebKB
ACC 76.7(0.6)� 87.2(1.1) 78.3(2.3)� 87.0(1.9)
NMI 0.6(0.4)� 37.3(2.5) 5.5(6.7)� 36.0(5.7)

win/tie/lose 14/2/0 - 15/1/0 -

Fig. 2. Sensitivity analysis on parameters � and g.
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866 SE+C and NS+C first learn view-specific representations by
867 solving the problem (7) with corresponding constraints, and
868 then extract the clustering results based on these fixed repre-
869 sentations by solving the problem (8). The experiments are
870 conducted on afore-mentioned eight datasets with IER=25%.
871 All parameters are determined by grid search, and the search
872 ranges are introduced in Section 5.2.3. On each dataset, we
873 create incomplete data for 10 independent times, and aver-
874 age results of ACC and NMI with best tuned parameters are
875 reported in Table 6.
876 As we can see from Table 6, JRLC-SE and JRLC-NS
877 achieves better results in terms of both ACC and NMI on all
878 datasets than the corresponding SE+C and NS+C, and the
879 improvements are significant on most cases. Compared with
880 results of baselines in Tables 3 and 4, on some datasets, the
881 results of SE+C and NS+C are worse than them with larger
882 IERs, while JRLC-SE and JRLC-NS outperform them, which
883 further indicates indicates that connecting representation
884 learning and clustering can achieve better performance.

885 5.6 Parameter Study

886 We study the influence of hyper-parameters g and � on the
887 performance of JRLC-SE and JRLC-NS. g51 controls the
888 smoothness extent of the distribution of the common proba-
889 bility label matrix and balances the view-specific term and
890 the co-regularization term. � controls the scaling of the
891 reconstructed similarity matrices. g is tuned in the range of
892 f1:1; 1:3; 1:5; 1:7; 1:9; 2:1; 2:3; 2:5g while � is varied from
893 f10�2; 10�1:5; 10�1; 10�0:5; 100; 100:5; 101; 101:5; 102g. The experi-
894 ments are conducted on MSRC-v1 and Caltech7. On each
895 dataset, IER is fixed as 50 percent. Since NMI has similar
896 tendency with ACC, Fig. 2 shows ACC results with varying
897 parameters g and � on 2 datasets.
898 From Fig. 2, we observe that: 1) The performance of
899 JRLC-SE is more affected by �. With suitable �, JRLC-SE can
900 achieves acceptable results by tuning g. Compared with
901 JRLC-SE, JRLC-NS achieves acceptable performance in a
902 wider range. 2) On the two datasets, JRLC-SE have different
903 optimal parameters. And JRLC-NS has the same situation.
904 Therefore, for both JRLC-SE and JRLC-NS, how to identify
905 the optimal parameters is data-dependent. Two datasets
906 have different optimal parameters because their data char-
907 acteristics are different.

908 6 APPLICATION TO NEWS CLUSTERING

909 News topic clustering aims to identify a set of clusters that
910 accurately reflects the topics present in the news collection.
911 Compared with other traditional clustering tasks, news
912 topic clustering is more complex due to the following two

913reasons: 1) There are usually different sources to report the
914same news, which results in multi-view data; 2) Different
915from those tasks with quantitative features, more time and
916effort are required for pre-processing data. In real applica-
917tions, both of these factors can cause incomplete multi-view
918clustering problem.
9193Sources9 consists 416 news stories collected from three
920online news sources: BBC, Reuters, and The Guardian. The
921416 news are classified into 6 classes, i.e., 104 business stories,
92260 entertainment stories, 54 health stories, 49 politics stories,
92389 sport stories and 60 tech stories. Since each story may not
924be reported by all three sources, which results in incomplete
925views of 3Sources. By selecting news stories belonging two
926sources, three incomplete datasets can be generated, i.e.,
927BBC-Guardian (B-G), BBC-Reuters (B-R) and Guardian-
928Reuters (G-R). BBC and BBCSport are two news datasets col-
929lected by [45]. BBC is composed of 2225 news documents
930and is divided to 5 classes, i.e., 510 business documents, 386
931entertainment documents, 417 politics documents, 511 sport
932documents, and 401 tech documents. BBCSport consists of
933737 news documents and is divided into 5 classes, i.e., 101
934athletics documents, 124 cricket documents, 265 football
935documents, 147 rugby documents, and 100 tennis docu-
936ments. In [46], a pre-processing methodology has been pro-
937posed. First, it splits each raw document into segments by
938merging consecutive paragraphs, and this process makes
939sure that each segment has at least 200 words. Then each seg-
940ment is assigned to at most one view. Since segments of each
941document may be assigned to some but not all of views, this
942methodology results in six incompletemulti-view datasets,10

943i.e., BBC2, BBC3, BBC4, BBCSport2, BBCSport3 and
944BBCSport4. The brief summaries of the ten incomplete data-
945sets are listed in Table 7.
946In this section, we cluster these ten datasets. Similarly,
947we compare JRLC-SE and JRLC-NS with eight baselines. In
948this section, the neighbor number k is fixed as 15, and other
949parameters are determined by the same way as Section 5.2.3.
950And we repeat 10 independent times, and report the mean
951ACC and NMI results with STD in Table 8.
952From Table 8, we have the following observations: 1)
953ComparedwithMVL-IV and IMG,MIC andDAIMC achieve
954worse results on datasets with large IERs. The possible rea-
955son is that the nonnegative constraint limits the flexibility of
956the representation learning. 2) DMF-F and DMF-R outper-
957form traditional matrix factorization-based methods in most
958cases. DMF-F achieves better results in some cases, indicat-
959ing that matrix factorization cannot always well reflect the

TABLE 7
Details of Ten Incomplete Multi-View Datasets (present data size (dimensionality))

View 3Sourses B-G B-R G-R BBC2 BBC3 BBC4 BBCSport2 BBCSport3 BBCSport4

1 352(3560) 352(3560) 352(3560) 302(3631) 2125 (6838) 1828 (5470) 1543 (4659) 644 (3183) 519 (2582) 400 (1991)
2 302(3631) 302(3631) 294(3068) 294(3068) 2112 (6790) 1832 (5549) 1524 (4633) 637 (3203) 531 (2544) 410 (2063)
3 294(3068) - - - - 1845 (5483) 1574 (4665) - 513 (2465) 437 (2113)
4 - - - - - - 1549 (4684) - - 432 (2158)

Dats size 416 404 407 384 2225 737
Classes 6 6 6 6 5 5

9. http://mlg.ucd.ie/datasets/3sources.html
10. http://mlg.ucd.ie/datasets/segment.html
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960 structure of data. 3) IMMK-MKC outperformsmatrix factori-
961 zationmethods on all datasets, while PIC achieves better per-
962 formance than IMG only on 3sourse. It is probably because
963 that simple average filling strategy may introduce more bad
964 information. 4) The proposed JRLC-SE and JRLC-NS outper-
965 form the state-of-the-art methods on all ten datasets, and the
966 improvements become more significant on datasets with
967 large IERs. On BBC2, BBC3 and BBC4, the increased IER
968 makes the performances of JRLC-SE and JRLC-NS decline
969 slightly. Similar phenomena can be observed on BBCSport2,
970 BBCSport3 and BBCSport4. The possible reason is that the
971 view data matrices have very sparse features, which makes
972 the quality of partial graph construction robust to incom-
973 pleteness of views.

974 7 CONCLUSION

975 In this paper, we propose JRLC framework, which makes
976 view-specific representation learning and clustering inte-
977 grated seamlessly to achieve better performance. Under
978 guidance of this framework, several new graph-based
979 incomplete multi-view clustering methods can be devel-
980 oped based on existing single-view representation learning
981 methods. As shown in this paper, within the framework,
982 we propose two specific methods JRLC-SE and JRLC-NS.
983 The optimization algorithms effectively and efficiently solve
984 the resultant problems of JRLC-SE and JRLC-NS, and it
985 demonstrates well improved clustering performance via
986 extensive experiments on several datasets and news topic
987 clustering application. In the future, we plan to design new

988methods within this framework to achieve better clustering
989performance. Besides, we are planning to analyze the con-
990vergence rate of the proposed algorithms in a future study.
991Moreover, we want to further improve the proposed frame-
992work by taking the correlations of partial similarity matrices
993into account. Also, extending this framework for incomplete
994multi-view semi-supervised classification problem is inter-
995esting and worth exploring in future.
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