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Abstract—The genome-wide association study (GWAS) is a popular approach to identify disease-associated genetic factors for
Alzhemer’s Disease (AD). However, it remains challenging because of the small number of samples, very high feature dimensionality
and complex structures. To accurately identify genetic risk factors for AD, we propose a novel method based on an in-depth exploration
of the hierarchical structure among the features and the commonality across related tasks. Specifically, we first extract and encode the
tree hierarchy among features; then, we integrate the tree structures with multi-task feature learning (MTFL) to learn the shared
features—that are predictive of AD—among related tasks simultaneously. Thus we can unify the strength of both the prior structure
information and MTFL to boost the prediction performance. However, due to the highly complex regularizer that encodes the tree
structure and the extremely high feature dimensionality, the learning process can be computationally prohibitive. To address this, we
further develop a novel safe screening rule to quickly identify and remove the irrelevant features before training. Experiment results
demonstrate that the proposed approach significantly outperforms the state-of-the-art in detecting genetic risk factors of AD and the
speedup gained by the proposed screening can be several orders of magnitude.

Index Terms—Tree-structured group Lasso, Multi-task learning, Alzheimer’s disease, Genome-wide association studies, Screening.
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1 INTRODUCTION

THE genome-wide association study (GWAS) [1], [2], [3]
is an emerging technique to identify genetic risk factors

by uncovering the associations between single nucleotide
polymorphisms (SNPs) and quantitative traits, such as brain
images of patients with Alzheimer’s-disease (AD) [4]. In
the past few years, GWAS has achieved great success in
identifying genetic risk factors for many human diseases
including diabetes [5], [6], heart abnormalities [7], [8] and
Parkinson disease [9], [10], [11]. In this paper, we focus on
the detection of genetic risk factors for AD.

Many early studies on GWAS are based on univariate
analysis, which does not take into account the joint effect of
multiple SNPs. Different from these univariate approaches,
Lasso [12] is a popular multivariate technique [13], [14] that
is capable of addressing the potential dependency among
features. Due to its `1 sparsity-inducing regularizer, Lasso
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provides a set of candidate SNPs for the genetic risk factors.
However, as the `1-regularization treats all SNPs equally,
traditional Lasso based approaches do not take the feature
structures into consideration. Recently, Yang et al. [15] pro-
posed a non-convex model named Absolute Fused Lasso
(AFL) model with a penalty, which encourages sparsity in
the coefficients as well as their successive differences of
absolute values, to identify the genetic risk factors related
to AD. Nevertheless, AFL also cannot take feature structure
into consideration.

Indeed, in many real-world applications, the features
exhibit certain intrinsic structures, such as spatial or tempo-
ral smoothness, groups, and trees. Many recent studies [2],
[3], [16] have shown that incorporating the a prior structure
information can significantly improve the prediction perfor-
mance and facilitate the identification of important features.
Motivated by this observation, tree-structured group Lasso
(TGL) [16], [17] has been employed to analyze the GWAS da-
ta by incorporating the tree hierarchy—that can be obtained
by linkage disequilibrium (LD [18])—among SNPs, thereby
providing superior performance in identifying AD-related
SNPs.

Motivations: However, most existing work focuses on
one task, e.g., one brain region of AD patients, while we
may have the magnetic resonance imaging (MRI) data for
multiple brain regions that can be exploited. Another line
of research proposes to learn a set of shared SNPs across
several related tasks under the framework of multi-task
feature learning (MTFL) [19], [20], though they ignore the
hierarchical tree structure among SNPs. To enhance the
advantages of the prior tree structure and the potential
commonality across related tasks in identifying AD-related
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SNPs, in this paper, we propose a novel—that is also the
first—approach to learn a Shared Tree-structured sparse
pattern across Multiple related tasks (STM). We note that,
although the work in [21] also proposes to combine TGL
with MTFL, the tree structure is assumed on the multivari-
ate output space, which is the major difference from the
proposed STM.

Although the integration of the prior tree structure and
MTFL may dramatically enhance the prediction perfor-
mance of STM in identifying the AD-related SNPs, the
optimization of STM may be computationally prohibitive
due to the nonsmooth and highly complex regularizer.
Moreover, the high feature dimensionality makes it even
more challenging in applying STM to analyze GWAS data.
To address this, we propose an efficient Hierachical Feature
Screening rule (HFS) for STM to quickly identify the ir-
relevant features, which can be removed from the training
phase, without losing any useful information. This leads to
a significant speedup—that can be orders of magnitude—of
the downstream optimization of STM. Moreover, HFS is safe
as the models learned on the reduced data are identical to
the ones learned on the full data.

The main contributions of this paper are thus:

• We propose a novel method named STM for accu-
rately identifying genetic risk factors for AD, which
can explore in-depth the hierarchical structure a-
mong the features and the commonality across re-
lated tasks.

• Since the learning process is very time consuming,
we develop an effective screening rule called HFS for
our proposed method, which can improve the time-
efficiency by several orders of magnitude.

• Experiment results and the medical evaluation
demonstrate that the proposed method is efficient
and can greatly accelerate the discovery of causal
variants for complex diseases.

The rest of this paper is organized as follows. In Section
2, we briefly review some basics of TGL, MTFL, and feature
screening [17], [22], [23]. We then propose our method STM
in Section 3. In Section 4, we derive the HFS screening rule
in detail. We evaluate the proposed STM combined with
HFS and other state-of-the-art methods on both synthetic
and real-world data in terms of efficiency and prediction
accuracy in Section 5. We give some concluding remarks in
Section 6.

2 PRELIMINARY

2.1 Tree-structured Group Lasso

TGL is a popular method that encodes the hierarchical
structure—that can be represented by an index tree—among
features. For a positive integer p, let [p] = {1, ..., p}. If
G1, G2 ⊆ [p], the inclusion G1 ⊂ G2 implies that G1 is a
proper subset of G2. Then, an index tree is given as follows.

Definition 1. (Index Tree) [24] For an index tree T of depth
d, we denote the nodes of depth i by Ti = {Gi1, ..., Gini

}, where
n0 = 1, G0

1 = [p], Gij ⊂ [p], and ni ≥ 1,∀ i ≤ d. In addition,
the following conditions should be satisfied:
(i) : Gij1 ∩ G

i
j2

= ∅,∀i ≤ d and j1 6= j2 (different nodes in the

same layer do not overlap).
(ii) : If Gij is a parent node of Gi+1

l , then Gi+1
l ⊂ Gij .

Figure 1 shows a simple index tree.

Fig. 1. Index tree example with G0
1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, G1

1 =
{1, 2, 3}, G1

2 = {4, 5}, G1
3 = {6, 7, 8, 9}, G2

1 = {6}, and G2
2 = {7, 8, 9}.

Let ‖ · ‖ be the `2 norm of a given vector. If G ⊆ [p], we
denote the complement set of G with respect to [p] by Ḡ =
[p] \ G. For a vector β ∈ Rp, we denote the i-th component
of β by [β]i. Then, for G ⊆ [p], we define βG by [βG]i = [β]i
if i ∈ G and [βG]i = 0 otherwise. Suppose that the tree
structure is available, then TGL takes the form of

min
β

1

2
‖y −Xβ‖2 + λ

d∑
i=0

ni∑
j=1

wij‖βGi
j
‖, (1)

where y ∈ RN is the response vector, X ∈ RN×p is the
data matrix, βGi

j
and wij are the coefficients vector and

positive weight (that is given) corresponding to node Gij ,
respectively, and λ > 0 being a regularization parameter.

We can see that, if βGi
j

= 0 and Glk is a child node of Gij ,
that is, Glk ⊂ Gij , then βGl

k
= 0.

2.2 Multi-task Feature Learning
MTFL is a powerful feature learning method that can exploit
the commonality across related tasks. Given the training
data {(Xt, yt) : t = 1, ..., T} for T tasks, where Xt ∈ RNt×p

is the data matrix of the t-th task consisting of Nt training
samples and yt ∈ RNt is the corresponding response vector.
Let N =

∑T
t=1Nt be the total number of samples, a popular

MTFL model [25] takes the form of

min
B∈RN×p

T∑
t=1

1

2
||yt −Xtβt||2 + λ||B||2,1, (2)

where B = (β1, ..., βT ) with βt being the coefficient vector
of the t-th task, ‖B‖2,1 =

∑p
i=1 ‖βi‖ with βi being the i-

th row of B and λ > 0 being a regularization parameter.
Therefore, the regularizer encourages sparsity on the rows
of B and then constrains all tasks to select a common set of
features.

2.3 Feature Reduction by Screening
Screening refers to a suite of emerging techniques that can
dramatically scale up sparse learning methods for big and
complex data that were previously impossible. Essentially,
screening aims to quickly identify the irrelevant features—
that can be removed from the training phase—before the
optimization algorithms are applied. The reduction of fea-
tures can lead to substantial savings in computational time
and memory usage by orders of magnitude.
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Existing screening methods can be roughly divided into
two categories: heuristic methods [26] and safe methods
[17], [22], [27]. Briefly speaking, heuristic methods may
mistakenly discard features that are supposed to be selected
by the model. Therefore, heuristic methods usually have a
post-processing procedure—by checking the Karush-Kuhn-
Tucker (KKT) conditions [28]—to ensure that all relevant
features are included in the candidate set. In contrast, for
safe screening methods, the models learned on the reduced
data are identical to the ones learned on the full data. There-
fore, safe screening can significantly improve the efficiency
of sparse learning methods without sacrificing accuracy.

In recent years, many efforts are devoted to developing
efficient screening methods for a large set of sparse learning
models, like Lasso, group Lasso, `1 regularized logistic re-
gression, etc. To the best of our knowledge, existing screen-
ing rules are not applicable to our technically challenging
STM formulation, which will be analyzed in detail in section
4. Thus, one of our major technical contributions is the
proposed HFS screening rule for STM.

3 OUR STM FORMULATION

In this section, we introduce the proposed STM (Shared
Tree-guided feature learning across Multiple tasks) model.

GWAS data sets usually do not have enough training
samples as collecting genotype data is scarce, and the fea-
ture dimension can be much higher than the number of
samples. Thus, the analysis of GWAS data remains chal-
lenging and many traditional techniques are inadequate.
Recent studies [2], [3], [16]have shown that incorporating
the hierarchical tree structure among features by the LD
block information can significantly improve the prediction
performance in identifying the genetic risk factors for AD.
Moreover, we note that, multiple AD-related quantitative
traits, such as the MRI data for multiple brain regions, are
available. Enlightened by the aforementioned observations,
we propose to detect the genetic risk factors for AD by
learning multiple related tasks with a shared tree structure.

Suppose that we have T related tasks to learn. For the
t-th task, let Xt ∈ RNt×p be the data matrix consisting of
Nt samples, each of which is represented by a vector in Rp,
and let yt ∈ RNt be the response vector. Thus, we have
N =

∑T
t=1Nt samples in total. To simplify notations, for

a given matrix M, let mj and mi be its j-th column and
i-th row, respectively, and ‖M‖F be its Frobenius norm. If
G ⊂ [p], let MG be the sub-matrix of M that consists of mi

with i ∈ G.
Supposing that the tree structure is available, the pro-

posed STM takes the form of

min
B∈Rp×T

T∑
t=1

1

2
||yt −Xtβt||2 + λ

d∑
i=0

ni∑
j=1

wij ||BGi
j
||F , (3)

where B = (β1, . . . , βT ), λ and wij for i = 0, . . . , d, j =
1, . . . , ni are positive parameters.

Figure 2 illustrates how we impose a tree structure on
the coefficient matrix B. We can see that, each column βt of
B corresponds to the coefficient vector of the t-th task; each
row βl corresponds to the coefficients of the l-th features
across all tasks. Thus, each node Gij ⊆ [p] corresponds to

Fig. 2. An index tree shared by multiple tasks. The tree is the same as
the one in Figure 1.

a sub-matrix BGi
j

of the coefficient matrix B. This is the
major difference that distinguishes STM from TGL, lead-
ing to significant technical challenges to the optimization.
Therefore, the regularizer in STM [the second term in (3)]
can encourage a shared tree structure among features across
multiple tasks.

We note that the tree structure in [21] is assumed on
the multivariate output space, which is the major difference
compared to our STM.

4 THE PROPOSED SCREENING RULE

In the last section, we present our proposed STM model for
GWAS. However, due to the nonsmooth and highly complex
regularizer and the extremely high dimensionality of the
features, directly solving the optimization problem (3) is
very time consuming. To this end, we develop an efficient
screening rule called Hierarchically Feature Screening (HFS)
for our model to improve the training efficiency.

Before presenting our method, we would like to point
out that our HFS looks similar but differs in nature with
the recent screening works [17]. Although we can rewrite
our formulation (3) into the form of the problem in [17] by
arranging the data matrices diagonally to form a big matrix,
whose size would be as large as

∑
Nt×pT (T−1 times larger

than the total size of all the data matrices). This leads to a
sheer waste of memory and computational cost and makes
[17] incapable in high dimensional and data intensive cases.
Thus we cannot apply [17] to STM directly.

Similar to the works [17] and [22], our HFS is inspired
by the KKT condition. It is mainly comprised of two steps:
estimate the dual solution based on the solutions with a
larger λ, then identify the inactive features based on the
KKT condition. In this section, we will first derive the dual
problem and the KKT condition of our model. Then, to
make our key ideas in developing the rules more accessible,
we develop the preliminary screening method when the
optimal solution θ∗ of the dual problem (4) is known.
Finally, we design our screening rules for STM when the
optimal solution θ∗ of the dual problem is not available.

4.1 The Dual Problem and KKT Condition
To simplify notations, we denote Rp×T by H. For any
U1, U2 ∈ H, let 〈U1, U2〉 = tr(UT1 U2). We first introduce
the following useful result.
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Lemma 1. For any convex function ψ(B) : H → R, with
ψ(0) = 0 and a fixed point ζ ∈ H. If we define h(B) =
ψ(B)− 〈ζ,B〉, then the followings hold:
(i) minB∈H h(B) ≥ 0⇔ ζ ∈ ∂ψ(0),
(ii) minB∈H h(B) = −∞⇔ ζ /∈ ∂ψ(0).

Proof. i) (⇐) Suppose that ζ ∈ ∂ψ(0). Then, we have

ψ(B)− ψ(0) ≥ 〈ζ,B〉,⇒ h(B) ≥ ψ(0),∀B ∈ H.

It implies that minB∈H h(B) ≥ ψ(0) = 0.
(⇒) Suppose that minB∈H h(B) ≥ 0, we will show that

ζ ∈ ∂ψ(0) by contradiction.
Suppose that ζ /∈ ∂ψ(0). Then by the definition of sub-

gradient, we can find B0 ∈ H such that

ψ(B0)− ψ(0) < 〈ζ,B0〉 ⇒ h(B0) < ψ(0) = 0,

which contradicts the assumption that minB∈H h(B) ≥ 0. It
implies that ζ ∈ ∂ψ(0). Thus the proof of (i) is completed.
ii) By part (i), we already have

min
B∈H

h(B) < 0⇔ ζ /∈ ∂ψ(0).

So we only need to show that

ζ /∈ ∂ψ(0)⇒ min
B∈H

h(B) = −∞.

Indeed, by part (i), ζ /∈ ∂ψ(0) leads to

∃B0 ∈ H, such that h(B0) < 0.

By noting that h(tB) = th(B) holds for any t ≥ 0, we have

lim
t→∞

h(tB0)→ −∞⇒ min
B

h(B) = −∞.

The proof is complete.

Now with this lemma, we turn to derive the Lagrangian
dual problem and the KKT condition for our model STM,
which are given in Theorem 1 below.

Theorem 1. For our model, the following holds:
(i) The Lagrangian dual problem can be written as

sup
θ
{1

2
||y||2 − 1

2
||y
λ
− θ||2 : θ ∈ F}, (4)

where the feasible region F = {θ = (θ1; ...; θT ) ∈ RN :
M(θ) = (XT

1 θ1, ..., X
T
T θT ) ∈ ∂φ(0), θt ∈ RNt}.

(ii) The KKT conditions are:

yt −Xtβ
∗
t = λθ∗t , t = 1, ..., T, (5)

M(θ∗(λ)) = (XT
1 θ
∗
1 , ..., X

T
T θ
∗
T ) ∈ ∂φ(B∗), (6)

where B∗ and θ∗ are the optimal solutions of the primal problem
(3) and the dual problem (4) respectively.

Proof. We first introduce a sequence of new variables

zt = yt −Xtβt, t = 1, ..., T.

The primal problem (3) can then be rewritten as the con-
strained optimization problem below:

min
B∈H

{ T∑
t=1

1

2
||zt||2 + λφ(B) : zt = yt −Xtβt, t = 1, ..., T

}
.

For notational convenience, we let

f1(B) = λ(φ(B)−
T∑
t=1

〈XT
t θt, βt〉) = λ(φ(B)− 〈M(θ),B〉),

f2(z) =
T∑
t=1

(
1

2
||zt||2 − λ〈θt, zt〉),

where M(θ) = (XT
1 θ1, ..., X

T
T θT ), z = (z1; ...; zT ), then the

Lagrangian becomes

L(B, z, θ) =
T∑
t=1

1

2
||zt||2 + λφ(B) + λ

T∑
t=1

〈θt, yt −Xtβt − zt〉

= f1(B) + f2(z) + λ
T∑
t=1

〈θt, yt〉. (7)

From Lemma 1 and the fact that f1(0) = 0, we have

min
B∈H

f1(B) =

{
0, if M(θ) ∈ ∂φ(0),
−∞, otherwise. (8)

If B∗ ∈ arg minB f1(B), we have

0 ∈ ∂f1(B∗)⇔M(θ) ∈ ∂φ(B∗), (9)

which is one of the KKT conditions. In addition, we have

0 = ∇z∗f2(z∗)⇒ z∗ = λθ and min
z
f2(z) = −λ

2

2
||θ||2.

(10)

Thus we get another KKT condition

yt −Xtβ
∗
t = λθ∗t , t = 1, ..., T. (11)

By plugging (10) and (8) into (7), we can obtain the La-
grangian dual problem below

sup
θ
{1

2
||y||2 − 1

2
||y
λ
− θ||2 : θ ∈ F},

where F = {θ : M(θ) = (XT
1 θ1, ..., X

T
T θT ) ∈ ∂φ(0)}.

From formulations (11) and (9), we get the KKT conditions

yt −Xtβ
∗
t = λθ∗t , t = 1, ..., T

M(θ∗(λ)) = (XT
1 θ
∗
1 , ..., X

T
T θ
∗
T ) ∈ ∂φ(B∗).

The proof is complete.

Since ∂φ(0) is a convex set, the feasible set F is also
convex. Theorem 1 tells us that the solution θ∗(λ) of the dual
problem (4) is the projection of y/λ onto the convex set F .
This geometric property plays a fundamentally important
role in developing our screening rule.

4.2 Preliminary Screening Rules by KKT Condition

We first present the basic idea for developing our prelimi-
nary screening rules.

Denote φij(B) = ||BGi
j
||F , and Bij = {ζ ∈ H : ||ζ|| ≤

wij}. Then the sub-differential of φ(B) becomes

∂φ(B) =
d∑
i=1

ni∑
j=1

wij∂φ
i
j(B) ⊆

d∑
i=1

ni∑
j=1

Bij .
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To be specific, for any node Gij , we have

∂φij(B
∗(λ)) =

{
{ζ ∈ HGi

j
: ||ζ||F ≤ 1}, if [B∗(λ)]Gi

j
= 0

[B∗(λ)]Gi
j
/||[B∗(λ)]Gi

j
||F , otherwise

This implies that

[B∗(λ)]Gi
j

= 0 if ||∂φij(B∗(λ))|| < 1. (12)

Since the KKT condition (6) in Theorem 1 indicates that
M(θ∗(λ)) ∈ ∂φ(B∗), we can split M(θ∗(λ)) as:

M(θ∗(λ)) = (XT
1 θ
∗
1 , ...,X

T
T θ
∗
T ) =

d∑
i=0

ni∑
j=1

ξij , (13)

where ξij ∈ wij∂φij(B∗(λ)),∀i ∈ 0 ∪ [d], j ∈ [ni]. Combined
with (12), it leads to the preliminary screening rule below,
which is the key idea of the final screening method.

∀i ∈ 0 ∪ [d], j ∈ [ni], [B
∗(λ)]Gi

j
= 0, if ||ξij ||F < wij , (R∗)

This rule tells us that if the component ξij in ∂φ(B∗) satisfies
the condition that ||ξij ||F < wij , then the features included
in node Gij are inactive.

Then, in order to split M(θ∗(λ)) into the desired form
(13), we adopt the efficient Hierarchical Projection algorithm
(Algorithm 1) proposed in [17]. There is a slightly difference
between Algorithm 1 and the original algorithm, that is, our
algorithm is used to project a matrix instead of a vector.

Algorithm 1 Hierarchical Projection: PA0
1
(·)

1: Input: Z ∈ H, the index tree T and positive weights wij
for all nodes Gij in T .

2: Output: U0 = PA0
1
(Z),Vi for ∀i ∈ 0 ∪ [d].

3: Set Ui ← 0 ∈ H,Vi ← 0 ∈ H,∀i ∈ 0 ∪ [d+ 1].
4: for i = d to 0 do
5: for j = 1 to ni do
6: Vi

Gi
j

= PBi
j
(ZGi

j
−Ui+1

Gi
j

), Ui
Gi

j
← Ui+1

Gi
j

+ Vi
Gi

j
.

7: end for
8: end for

Theorem 2. Let Vi, i ∈ 0 ∪ [d] be the output of Algorithm 1
with input M(θ∗), and {ξij : i ∈ 0 ∪ [d], j ∈ [ni]} be the set of
vectors that satisfy (13). Then

(i) :Vi
Gi

j
∈ wi

j∂φ
i
j(B
∗(λ)),∀i ∈ 0 ∪ [d], j ∈ [ni].

(ii) :Ui+1
Gi

j
= PCij (ZGi

j
), for any non-leaf node Gi

j.

According to part (i) of Theorem 2 and the preliminary
rule (R∗), we have

||Vi
Gi

j
||F < wij ⇒ [B∗(λ)]Gi

j
= 0

By using part (ii) of Theorem 2 and the initialization that
Ui+1
Gi

j
= 0 when Gij is a leaf node (step 3 in Algorithm 1), we

finally get the following screening rule, that is [B∗(λ)]Gi
j

=
0 when:

(a) : ||PBi
j

(
[M(θ∗(λ))]Gi

j
−PCij

(
[M(θ∗(λ))]Gi

j

))
||F < wij ,

if Gij is a non-leaf node.

(b) : ||PBi
j

(
[M(θ∗(λ))]Gi

j

)
||F < wij , if Gij is a leaf node.

From the definition of PBi
j

(
·
)
, we can further simplify them

into the following form: [B∗(λ)]Gi
j

= 0 if:

(a) : ||[M(θ∗(λ))]Gi
j
−PCij

(
[M(θ∗(λ))]Gi

j

)
||F < wij , (R1’)

if Gij is a non-leaf node.

(b) : ||[M(θ∗(λ))]Gi
j
||F < wij , if Gij is a leaf node. (R2’)

4.3 Estimation of the Dual Optimum
However, we can not apply the screening rules (R1’) and
(R2’) in real applications directly, since the optimal solution
θ∗(λ) is always unknown. Fortunately, we can estimate the
region where the dual solution θ∗(λ) lies, if we are given
one θ∗(λ0) with λ < λ0. Thus we need to know a θ∗(λ0)
at a special λ0 as a starter. Next, we show how to find this
special starter and how to estimate an appropriate region
where θ∗(λ) lies in.

A special case for the dual solution is the one corre-
sponding to the primal solution B∗(λ0) = 0. This can
be reached by choosing a large enough λ0. The following
theorem enables us to find the smallest λ0 that can make
B∗(λ0) = 0.

Theorem 3. For STM, we let λmax = max{λ : y/λ ∈ F} and
define the operator S0

1(Z) = Z−PC01 (Z). Then,

(i) :λmax = {λ : ||S0
1((XT

1 y1/λ, ...,X
T
TyT/λ))||F = w0

1}

(ii) :
y
λ
∈ F ⇔ λ ≥ λmax ⇔ θ∗(λ) =

y
λ
⇔ β∗λ = 0.

We first introduce a useful tool to characterize the pro-
jection operators and provide the definition of the normal
cone [17], [29] as:

Definition 2. (Normal Cone) Let Ω be a nonempty convex subset
of Rn. Then the normal cone to the set Ω at x ∈ Ω is defined by

NΩ(x) = {u ∈ Rn|〈u, y− x〉 ≤ 0,∀y ∈ Ω}. (14)

In the case where x /∈ Ω, we define NΩ(x) = ∅.

For estimating θ∗(λ), by utilizing the geometric proper-
ties of the dual problem (4) and the known solution θ∗(λ0),
we can bound the region in which the optimal dual solution
θ∗(λ) may lie in a small ball Θ in RN . This is justified in the
following theorem.

Theorem 4. For the primal problem (3), suppose that θ∗(λ0) is
already known with λ0 ≤ λmax. For λ ∈ (0, λ0), we define

n =

{
y
λ0
− θ∗(λ0), if λ0 < λmax

(X1S
0
1(XT

1
y1

λmax
); ...; XTS0

1(XT
T

yT

λmax
)), if λ0 = λmax

r(λ, λ0) =
y
λ
− θ∗(λ0),

r⊥(λ, λ0) = r(λ, λ0)− 〈r(λ, λ0), n(λ0)〉
||n(λ0)||2

n(λ0).

Then, the followings hold:
(i) n ∈ NF (θ∗(λ0)),
(ii) ||θ∗(λ)− (θ∗(λ0) + 1

2 r⊥(λ, λ0))|| ≤ || 12 r⊥(λ, λ0)||.

Theorem 4 indicates that θ∗(λ) is in a ball centered at
o(λ, λ) = θ∗(λ0) + 1

2 r⊥(λ, λ0) of radius 1
2 ||r
⊥(λ, λ0)||, i.e.,

Θ = {θ : ||θ − o(λ, λ0)|| ≤ 1

2
||r⊥(λ, λ0)||}. (15)
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4.4 The Proposed Screening Rules
In this section, based on the preliminary screening rules
(R1’) and (R2’), we will develop screening rules for the case
when we are given the ball Θ that θ∗(λ) lies in instead of
the optimal solution θ∗(λ), which is always unknown in real
word applications.

For each nodeGij in the index tree and the ball Θ defined
in (15) that θ∗(λ) ∈ Θ, we denote [M(Θ)]Gi

j
= {[M(θ)]Gi

j
:

θ ∈ Θ} and define an operator Sij(Z) = ZGi
j
− PCij

(
ZGi

j

)
,

then (R1’) and (R2’) can be relaxed into:

(a) : sij(λ, λ0) = sup
ζ

{
||Sij(ζ)|| : ζ ∈ Ξij ⊇ [M(Θ)]Gi

j

}
< wij

⇒ [B∗(λ)]Gi
j

= 0 if Gij is a non-leaf node, (R1∗)

(b) : sij(λ, λ0) = sup
ζ

{
||ζ|| : ζ ∈ Ξij

}
< wij

⇒ [B∗(λ)]Gi
j

= 0, if Gij is a leaf node. (R2∗)

where Ξij =
{
ζ : ζ ∈ HGi

j
and ||ζ − [M(o(λ, λ0))]Gi

j
|| ≤

1
2 ||r
⊥(λ, λ0)||max1≤t≤T {||Xt

Gi
j
||2}
}

.
In the above screening rules, we need to solve the fol-

lowing two optimization problems:

sij(λ, λ0) = sup
ζ

{
||Sij(ζ)|| : ζ ∈ Ξij

}
, if Gij is a non-leaf node,

(16)

sij(λ, λ0) = sup
ζ

{
||ζ|| : ζ ∈ Ξij

}
, if Gij is a leaf node. (17)

They are two non-convex problems since we need to find
a supreme value for a convex objective function. We can
show [17] that both of them enjoy close form solutions, as
presented in the following two theorems, respectively.

Before giving the theorems, we need to firstly introduce
the definitions of virtual node of an index tree, relative
interior and relative boundary.

Definition 3. (Virtual Node) [17] For a non-leaf node Gij of
an index tree T , let Ic(Gij) = {k : Gi+1

k ⊂ Gij}. If Gij \
∪k∈Ic(Gi

j)G
i+1
k 6= ∅, we define a virtual node of Gij by Gi+1

j′ =

Gij \ ∪k∈Ic(Gi
j)G

i+1
k for j′ ∈ {ni+1 + 1, ni+1 + 2, ..., ni+1 +

n′i+1}, where n′i+1 is the number of virtual nodes of depth i+ 1.

Definition 4. (Relative Interior) Let C be a nonempty convex
subset of Rn. Then we say that x is a relative interior point of C
if x ∈ C and there exists an open sphere S centered at x such that
S∩aff(C) ⊂ C, i.e. x is an interior point of C relative to the affine
hull of C. All of relative interior points of C is called the relative
interior of C, and is denoted by ri(C).

Definition 5. (Relative Boundary) The relative boundary of a
nonempty convex set C is defined as rbd(C) = cl(C)/ri(C),
where cl(C) and ri(C) are the closure and relative interior of C.

Lemma 2. [24] For any non-root node Gij , we can find a unique
path from Gij to the root G0

1. Let the nodes on this path be Glrl ,
where l ∈ 0 ∪ [i], r0 = 1, and ri = j. Then,

Gij ⊂ Glrl ,∀l ∈ 0 ∪ [i− 1].

Gij ∩Glr = ∅,∀r 6= rl, l ∈ [i− 1], r ∈ [ni].

Theorem 5. Let γ = 1
2 ||r
⊥(λ, λ0)||max1≤t≤T {||Xt

Gi
j
||2} and

c = [M(o(λ, λ0))]Gi
j
and vi, i ∈ 0 ∪ [d] be the output of

Algorithm 1 with input M(o(λ, λ0)). Then for problem (16),
we have:

• Suppose that c /∈ Cij . Then, sij(λ, λ0) = ||vi
Gi

j
||+ γ.

• Suppose that node Gij has a virtual child node. Then, for
any c ∈ Cij , sij(λ, λ0) = γ.

• Suppose that node Gij has no virtual child node. Then, the
followings hold:
1) If c ∈ rbd(Cij), then sij(λ, λ0) = γ.
2) If c ∈ ri(Cij), then for any node Gtk ⊂ Gij , where t ∈
{i+ 1, ..., d} and k ∈ [nt +n′t], let the nodes on the path
fromGtk toGij beGlrl , where l = i, ..., t, ri = j, and rt =

k, and Γ(Gi+1
ri+1

, Gtk) =
t∑

l=i+1
(wlrl − ||v

l
Gl

rl

||). Then,

sij(λ, λ0) =
(
γ −min{(k,t):Gt

k⊂Gi
j} Γ(Gi+1

ri+1
, Gtk)

)
+

.

Theorem 6. For problem (17), we have sij(λ, λ0) =
||[XTo(λ, λ0)]Gi

j
||+ 1

2 ||r
⊥(λ, λ0)||max1≤t≤T {||Xt

Gi
j
||2}.

Thus the screening rules (R1∗) and (R2∗) are developed.

4.5 Solving the Primal Problem of STM

We now turn to solving the optimization problem (3) in STM
using our developed screening rules.

Just as most existing learning models, the optimal pa-
rameter value λ for some specific real application is always
unknown. Typically, researchers adopt cross validation and
stability selection to determine an appropriate parameter
value. In each method, we need to solve STM many times
along a grid of parameter values. It would be very time
consuming. To this end, we solve a sequence of STM prob-
lems with the values of λ listed in a descending order. The
detailed steps are given in Algorithm 2. Its main advantage
is that the difference between two neighboring λ enable
us to estimate θλ much more accurately, which leads to
better performance in screening and finally improves the
efficiency.

Algorithm 2 Screening for STM
1: Input: λmax = λ0 > λ1 > ... > λK = λ, B∗(λ0) = 0.
2: Output: B∗(λK)
3: for k = 0 to K − 1 do
4: Compute θ∗(λk) using Eq. (5)
5: Estimate θ∗(λk+1)
6: Do feature reduction using the screening rules (R1∗)

and (R2∗)
7: Compute B∗(λk+1)
8: end for

In the initialization step, we first find the parameter λmax

which makes B∗(λmax) = 0 according to Theorem 3. And
then we insert K + 1 parameters λk(k = 0, ...,K) between
λmax and λ with λ0 = λmax and λK = λ. Thus we get
K + 1 STM problems and solve them one by one until we
get B∗(λ) as the steps 4-6 listed in Algorithm 2.

5 EXPERIMENTS

We evaluate the proposed STM and HFS on both synthetic
and real data sets in terms of the performance of feature
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selection and efficiency. We compare our method with the
following state-of-the-arts:

• Lasso [13]: Lasso equipped with screening for identi-
fying genetic risk factors for AD.

• MT [23]: Multi-Task Learning with screening.
• TGL [16]: TGL equipped with screening for identify-

ing genetic risk factors for AD.
• AFL [15]: AFL adopted non-convex model for iden-

tifying genetic risk factors for AD.

We perform all the computations on a single core of
Intel(R) Core(TM) i7-5930K 3.50GHz, 128GB MEM.

5.1 Experiment on Synthetic Data

We perform experiments on two synthetic datasets. We
use the smaller one, named synthetic 1, to visualize the
performance of sparse pattern recovery by Lasso, MT, T-
GL, AFL and STM. We use the larger one, named syn-
thetic 2, to evaluate the efficiency of STM combined with
the proposed HFS screening. For both synthetic 1 and
synthetic 2, we create eight tasks and the true model is:
yt = Xtβ

∗
t + 0.01ε, where Xt is sampled from a standard

Gaussian, ε ∼ N(0, 1), t = 1, .., 8. For synthetic 1, we set
Nt = 20, p = 100, and create a tree with three layers, where
n1 = 5, n2 = 10, and n3 = 100. For synthetic 2, we set
Nt = 600, p = 20000 and build a tree with three layers,
where n1 = 1000, n2 = 2000, and n3 = 20000. The nodes in
the same layer contain roughly the same number of features.
To construct β∗t , we first select 20% of the nodes in first
layer and then 50% of their child nodes in layer 2. Then,
the components of β∗t corresponding to the selected nodes
are sampled from a standard Gaussian. Thus 10% of the
features have nonzero coefficients.

5.1.1 Tree-Structured Sparse Pattern Recovery

We employ stability selection to recover the tree structured
sparse patterns of β∗t for t = 1, . . . , 8. Specifically, for each
trial, we randomly sample half of the data and solve a
sequence of problems with λ equally spaced on the loga-
rithmic scale of λ/λmax from 1.0 to 0.05. We run 10 trials
and report the averaged results.

Figure 3 shows the ground truth of B = (β∗1 , . . . , β
∗
8)

and the recovery results by Lasso, MT, TGL, AFL and
our proposed STM. The results in Figure 3 indicate that
our method can exactly recover the tree-structured sparse
patterns and significantly outperforms the competitors.

To give a quantitative comparison, we view the process
of feature selection as a classification task. Specifically, we
label 1 for the features with a nonzero coefficient and
zero for others in the ground-truth. Figures 4 and 5 show
the sensitivity and specificity—that are commonly used to
measure the classification performance—of Lasso, MT, TGL,
AFL and STM. We can see again that STM performs the best.

5.1.2 Evaluation of HFS

To evaluate the performance of the proposed HFS rule, we
employ two metrics: speedup and rejection ratios. Specif-
ically, speedup is the ratio of the running time of the

Ground Truth Lasso MT

TGL AFL STM

Fig. 3. Comparison results of selected features in synthetic 1. The
horizontal axis is the eight tasks and the vertical axis is the features.
Black pixels are the selected features.
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Fig. 4. The specificities and sensitivities of different models in each task
on synthetic 1.
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Fig. 5. The specificities and sensitivities of different models in each task
on synthetic 2.
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Fig. 6. The rejection ratios of HFS in different layers on Synthetic 2.

solver without screening to the running time of solver with
screening; rejection ratio for the i-th layer is defined by

ri =

∑
k∈Gi |Gik|
p0

,

where p0 is the number of zero coefficients in the solution
matrix, Gi is the index set of the inactive nodes in depth i
identified by our screening rules and |Gik| is the number of
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features contained in node Gik. The results are presented in
Table 1 and Figure 6.

Table 1 shows the detailed running time of the solver
with and without screening at a sequence of 100 values of
λ on synthetic 2. We can see that HFS leads to a significant
speedup—that is, 16.7 times on average. From the rejection
ratio in Figure 6, we can see that HFS can identify more than
98% of the inactive nodes in the first layer.

TABLE 1
Running time (in seconds) for solving STM on synthetic 2 and ADNI.
The second column: the solver without screening, the fourth column:

the solver with screening, the last column: speedup.

Dataset solver HFS HFS+solver speedup
synthetic 2 3395.7 13.5 203.7 16.7

ADNI 18010.4 184.7 242.1 74.4

5.2 Experiment on ADNI Data
In this section, we conduct a series of experiments
on Alzheimers Disease Neuroimaging Initiative (ADNI)
dataset to identify the genetic risk factors for AD. Specifi-
cally, brain atrophy is usually used as a biomarker of AD
in existing ADNI studies like [1]. Brain MRI is an effective
tool to detect and measure brain atrophy. Therefore, in this
experiment, we use the SNPs on Chr19 as the features
and the volumes of several different brain regions as the
responses to design an STM model to identify the genetic
risk factors for AD. The concrete processes are shown below.

5.2.1 Data Preprocessing
The ADNI dataset has a total of 1,319 subjects, comprised
of 327 healthy controls, 249 AD patients, 41 participants
with Mild Cognitive Impairment (MCI) [1], [4], 220 early
MCI (EMCI) patients, 419 late MCI (LMCI) patients, and
63 patients with Significant Memory Concerns (SMC) [30].
In this study, the T1 magnetic resonance imaging (MRI)
[4] volumes of the major influenced brain regions, such as
the hippocampus (HIPP) and the entorhinal cortex (EC) [1],
which are closely related to Alzheimers disease, are chosen
as a part of features. Therefore, each subject is represented
by one SNPs data and one T1 MRI representation, which is
extracted from the original volumes by Freesurfer [31].

For SNPs data, we perform standard quality control
in PLINK [32], which is a tool set and popularly used
to analyze the whole-genome association and population-
based linkage relationship, as data preprocessing. Firstly, we
remove SNPs whose minor allele frequency [33] < 5%, or
missingness > 5%, or the deviations from Hardy-Weinberg
Equilibrium P [34] < 5 × 10−7.Then we delete the sub-
jects from the dataset, whose missing SNPs are more than
10%. After this, we impute the data using a well known
method called MaCH [35], [36], which is a Markov chain-
based framework for genotype imputation and haplotyping.
MaCH is adopted to estimate haplotypes and inference
of missing genotypes by sequence and genotype data. In
addition, we apply several filter rules to the imputed data,
including RSQ (estimated R2 specific to each SNP) > 0.5,
FREQ1 (frequency for reference Allele 1) > 1% and FREQ1
< 99%. Finally, we get the training data with 1,319 subjects
and each subject has 155,357 SNPs from chromosome 19.

For the MRI data of each subject, we measure the vol-
umes of 4 different regions—left entorhinal cortex (LEH),
left hippocampus (LHP), right entorhinal cortex (REH), and
right hippocampus (RHP)—in the brain as the responses for
that subject. Thus, we can construct 4 responses for each
subject from its MRI data.

5.2.2 Tasks in Our Model
We construct 4 related tasks using the features matrix and
the 4 responses in the preprocessed dataset. For the t-th
task, the feature matrix is denoted as Xt ∈ R1,319×155,357

and each row presents a subject, each column is a SNP.
The response yt for this task is a vector in R155,357 and the
component yt(i) is the volume of the t-th brain region of the
i-th subject. Our goal is to identify the genetic risk factors for
AD by studying the associations between the feature matrix
Xt and the response vector yt.

5.2.3 Construct the Tree Structure for Features
We build a four layer index tree for grouping the SNPs
according to their pairwise R2 values and loci. In gen-
eral, since the pairwise R2 is unknown, we first con-
struct an index tree for a reference dataset that con-
tains 42,183 SNPs on Chr19 from HapMap release #27
(http://hapmap.ncbi.nlm.nih.gov/downloads/ld data/lat
est/ld chr19 CEU.txt.gz), who has entire pairwise R2 val-
ues. And then we map the index tree into our target dataset.
The detail steps are described below.

We first align chromosomal loci and refSNP cluster ID
in the reference dataset and the target dataset according
to Genome Reference Consortium GRCh37 using UCSC
LiftOver tool [37]. We group the adjacent SNPs together in
the reference dataset if their pairwise R2 is nonzero, which
forms 1,230 nodes. This is the first layer of the index tree for
the reference dataset. Then, for each node in the first layer,
we set the threshold of R2 to be 0.01. That is we groups the
adjacent SNPs together if their pairwiseR2 is larger or equal
to 0.01, which leads to the second layer of the index tree.
After that, we increase the threshold to 0.1 and construct the
third layer in the same way. Thus we obtain a three layers
index tree for the reference dataset.

Then, we map the three layers index tree from the refer-
ence dataset to the target dataset. Specifically, for each node
in the constructed tree starting from locus a and ending at
locus b, we group the SNPs in the target dataset whose loci
are between a and b into a node in the index tree for the
target dataset. If there is no SNP whose locus is between a
and b in the target dataset, we skip to the next node. In this
way, we can obtain a three layers index tree for the target
dataset. At last, we split each node in the last layer into
nodes with a single SNPs, which forms the forth layer with
155,357 nodes. As a result, we get a tree with a root layer and
additional layers 1 to 4. And the nodes numbers from layer
1 to layer 4 are 1,063, 5,133, 14,883 and 155,357 respectively.

5.2.4 Evaluation of Efficiency
In this experiment, we evaluate the efficiency of STM with
and without HFS on the ADNI data set.

We solve a sequence of STM models with and without
screening with different parameter λ, which equally spaced
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on the logarithmic scale of λ/λmax from 1.0 to 0.5. The result
in Table 1 shows that our screening method can speed up
STM model 74.4 times in average. In addition, we notice that
the speedup here is much significant than in the synthetic
experiment. Thus, we also expect HFS performs better in
high dimensional applications.
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Fig. 7. The rejection ratios of HFS in different layers on ADNI data set.

The rejection ratio results in Figure 7 shows that most of
the identified inactive nodes are screened in the fist layer.
After two layers screening, almost all the inactive nodes, i.e.∑4
i=1 ri > 98% are identified.

5.2.5 Ranking Predictors via Stability Selection

In this subsection, we evaluate the performance of our
model in identifying the genetic risk factors for AD.

We first randomly subsample half of the subjects in the
preprocessed dataset for 100 times. Then on each sampled
dataset, we solve the STM model with a sequence of λ
equally spaced on the logarithmic scale of λ/λmax from 1.0
to 0.5. After that, we use stability selection [38] to ranking
the SNPs identified in the solutions. At last, to show the
relevance of the top ranked SNPs with AD further, we
calculate the p-values of the top 100 SNPs in each task. We
repeat this process for the other two baseline methods and
get the ranked SNPs and their p-values (Pearson correlation
coefficient).

We show the p-values of the top 100 SNPs in 4 tasks
against their positions in Chr19 for each model in Figure 8.
All the four sub-figures show that the top 100 SNPs selected
by MT are spread over almost the whole region of Chr19.
This makes it difficult to tell which genes are more likely
to be the disease-causing genes linked to AD. It appears
that TGL performs better than MT, since its identified SNPs
are distributed in a few chromosome regions. However, in
the results with LEH and LHP as responses (upper left and
lower left panels), TGL also identifies some SNPs in the
first half of Chr19. Since there are no known disease-causing
genes in that regions, it is more likely that they are irrelevant
to AD. In contrast, the SNPs selected by our method spread
in a much narrower region. We give a more detailed plot in
Figure 9, and we can see that many of our selected SNPs are
located in several genes such as APOE, PVRL2, TOMM40
and APOC1, which are all already repeatedly proved to be
implicated in AD risk or risks for other neuropsychiatric
disorders [4], [39], [40], [41], [42]. To be specific, AlzGene
[39] gives ten candidate genes with high AD-risk, includ-
ing LDLR, GAPDHS, BCAM, PVRL2, TOMM40, APOE,

TABLE 2
The p-values and the corresponding genes of top 30 SNPs identified by

STM. Columns 1 to 6 represent RS ID of selected SNPs, p-value of
LEH, LHP, REH and RHP, and the corresponding gene.

RS ID LEH LHP REH RHP Gene
rs3745150 3e-04 4e-06 7e-07 1e-06 PVRL2
19:45386467 2e-04 3e-07 4e-07 1e-07 PVRL2
rs12972156 2e-04 3e-07 4e-07 1e-07 PVRL2
rs12972970 2e-04 3e-07 4e-07 1e-07 PVRL2
rs283810 2e-03 1e-05 8e-06 5e-06 PVRL2
rs283811 3e-04 6e-08 3e-07 4e-08 PVRL2
rs283812 5e-04 1e-06 3e-06 1e-06 PVRL2
rs283813 5e-01 2e-01 2e-02 7e-02 PVRL2
rs283814 5e-04 9e-07 3e-06 1e-06 PVRL2
rs283815 1e-04 1e-08 3e-08 2e-09 PVRL2
rs76692773 2e-04 2e-07 5e-07 7e-08 TOMM40
rs71352238 6e-04 6e-07 3e-06 5e-07 TOMM40
rs184017 9e-03 5e-04 5e-05 3e-05 TOMM40
rs2075649 2e-04 2e-07 4e-07 6e-08 TOMM40
rs2075650 5e-04 6e-07 2e-06 5e-07 TOMM40
rs157581 2e-03 1e-03 1e-05 4e-04 TOMM40
rs34095326 2e-04 2e-07 4e-07 7e-08 TOMM40
rs34404554 2e-04 2e-07 4e-07 7e-08 TOMM40
rs11556505 6e-04 6e-07 3e-06 5e-07 TOMM40
rs157582 2e-04 1e-07 1e-06 1e-07 TOMM40
19:45406538 6e-03 5e-05 2e-04 2e-06 APOE
rs7259620 2e-03 2e-04 3e-04 4e-03 APOE
rs769446 3e-02 3e-03 4e-02 5e-03 APOE
rs405509 1e-02 3e-03 1e-03 1e-03 APOE
rs440446 5e-07 4e-11 1e-08 3e-11 APOE
rs769450 2e-07 3e-12 9e-10 2e-12 APOE
rs1081106 2e-04 1e-06 6e-05 4e-06 none
rs445925 6e-07 4e-11 1e-08 3e-11 APOC1
rs10414043 6e-07 4e-11 1e-08 3e-11 APOC1
rs7256200 4e-05 4e-08 3e-06 1e-07 APOC1

APOC1, APOC4, EXOC3L2, and CD33, whose positions are
presented in Figure 10. These ten candidate genes have been
considered as the most strongly associated genes with AD
on Chr.19. Moreover, the study in [42] reveals that APOE is
the major susceptibility gene for sporadic late-onset AD. In
[4], [40], APOE and PVRL2 are proved to be significantly
associated with AD. The researchers in [41] demonstrate
the association between APOC1 and AD risk in Caucasians,
Asians and Caribbean Hispanics.

We list the top 30 SNPs identified by our model together
with their p-values in each task and the genes they belong
to in Table 2. The important thing is that some of our
top ranked SPNs are located in the gene APOE, PVRL2,
TOMM40 and APOC1. As we discussed above, all of these
genes have been proved to be associated with AD. This
verifies that our model can identify the genetic risk factors
for AD.

Table 3 lists the irrelevant SNPs wrongly selected by
TGL. We can see that these selected SNPs located in four
genes: ZNF682, VAV1, CD320 and SIGLECL1. From Figure
10, we can see that these genes have no confident relation-
ships with AD.

Synthesizing the above experiments in Figures 8,9 and
Table 2, we can see that our model STM has superiority over
the baseline methods Lasso, AFL, TGL and MT. This should
result from the fact that compared with TGL, our model
can learn from multiple related tasks simultaneously, and
that compared with MT, our method has an effective tree
structure to group the SNPs according to their relationships.

At last, our work obtains the positive medical evaluation
from Dr. Li Liu (homepage: https://biodesign.asu.edu/li-
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TABLE 3
The irrelevant SNPs in the top 100 SNPs selected by TGL. From

Column 2 to Column 4, they represent RS ID of selected SNPs, the
corresponding p-value and gene, respectively.

Region RS ID p value Gene
19:20115643 4e-03 ZNF682
19:6852734 3e-03 VAV1
19:6861043 2e-03 none
19:6865229 3e-02 none
19:6871492 8e-02 none
rs10414931 7e-03 none
rs112526880 3e-03 none
rs11666078 7e-01 none
rs11669968 2e-03 none
rs11672182 1e-01 none
rs11672913 2e-01 none
rs146666686 2e-03 none
rs17718517 2e-03 none
rs186715 1e-01 none

LEH rs1990216 2e-03 none
rs331689 1e-02 none
rs331690 6e-03 none
rs331691 1e-02 none
rs461970 2e-03 VAV1

rs55673918 1e-03 none
rs55822857 4e-04 none
rs56079027 1e-03 none
rs56931055 1e-02 none
rs58179654 2e-02 none
rs59055395 3e-02 none
rs60967546 4e-02 none
rs61471228 2e-03 none
rs7255262 4e-02 none
rs72982472 1e-01 none
rs8108918 8e-03 none
19:8369544 2e-03 CD320
rs11668174 3e-03 SIGLECL1
rs11672446 6e-03 SIGLECL1
rs2002602 5e-02 CD320
rs2232778 2e-03 CD320

LHP rs2913943 2e-02 CD320
rs2927707 1e-02 CD320
rs2927708 2e-03 CD320
rs2927709 2e-03 CD320
rs56303780 2e-03 CD320
rs890856 8e-02 CD320
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Fig. 8. The p values of the top 100 SNPs obtained by different methods.
The horizontal axis is mapped to chromosome position.

liu), who is an assistant professor of Biomedical Informatics

and a trained clinician. She is one of medical professionals
with experience in AD and appreciates the critical roles
genomic medicine and bioinformatics play in advancing
precision medicine. Her medical evaluation is summarized
as follows:

Medical Evaluation: Progressive atrophy of the en-
torhinal cortex and the hippocampus is an early indi-
cator of dementia even prior to clinically observable
symptoms [43]. By analyzing brain MRI images and
SNP data with the new STM method, we identified a
narrow genomic region on chromosome 19 that was
significantly associated with in vivo volume of four
subregions of this area. This genomic region contains
four genes (PVRL2, TOMM40, APOE and APOC1)
with proved functions in the pathogenesis of AD
[44]. In particular, we noticed that STM identified a
common set of SNPs as genetic risk factors of atrophy
in all of the four subregions (Table 2). Compared to
other SNPs with inconsistent associations reported
by other methods, these SNPs are more likely to
contain causal variants (or at least linked to causal
variants) that predispose an individual to AD. Fine-
mapping causal variants is a grand challenge in G-
WAS analysis. By pinpointing a set of candidate SNPs
associated with multiple clinical responses, STM can
greatly accelerate the discovery of causal variants for
complex diseases.

LHP

PVRl2 TOMM40 APOE APOC1 APOC1P1 APOC4
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Fig. 9. The detailed plot of the p values of the top 100 SNPs obtained
by STM with LHP as response. SNP groups in the layer 2 of our tree
structure are plotted as green and red blocks on the chromosome. The
genes distributed along the chromosome are plotted as black blocks.

6 CONCLUSION

In this paper, we propose a novel feature learning method
called STM for identifying genetic risk factors for AD. The
key idea is to explore in-depth the hierarchical structure a-
mong the features and the commonality across related tasks
at the same time. Essentially, it is a multi-task feature learn-
ing model integrated with a tree structure for the features.
The extensive experiment results on both synthetic and real
datasets show that our model has great superiority over the
existing methods in feature learning. In addition, to improve
the time efficiency, we develop an effective screening rule
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called HFS for our method, which can improve the time-
efficiency by several orders of magnitude. In the future, we
plan to investigate models for finding the most related tasks
from numerous tasks automatically.

Fig. 10. AD-risk genes (marked by yellow) on Chr.19 according to Alz-
Gene. Figure adapted from http://www.alzgene.org/chromo.asp?c=19.

ACKNOWLEDGMENTS

This work was supported by National Youth Top-notch
Talent Support Program. The authors would like to specially
thank Dr. Li Liu (liliu@asu.edu) for providing the profes-
sional medical evaluation.

REFERENCES

[1] L. Shen, S. Kim, S. L. Risacher, K. Nho, S. Swaminathan, J. D. West,
T. Foroud, N. Pankratz, J. H. Moore, C. D. Sloan et al., “Whole
genome association study of brain-wide imaging phenotypes for
identifying quantitative trait loci in mci and ad: A study of the
adni cohort,” Neuroimage, vol. 53, no. 3, pp. 1051–1063, 2010.

[2] M. Liu, D. Zhang, P.-T. Yap, and D. Shen, “Tree-guided sparse
coding for brain disease classification,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2012, pp. 239–247.

[3] X. Hao, J. Yu, and D. Zhang, “Identifying genetic associations
with mri-derived measures via tree-guided sparse learning,” in
International Conference on Medical Image Computing and Computer-
assisted Intervention. Springer, 2014, pp. 757–764.

[4] N. Schuff, N. Woerner, L. Boreta, T. Kornfield, L. Shaw, J. Tro-
janowski, P. Thompson, C. Jack Jr, M. Weiner, and A. D. N.
Initiative, “Mri of hippocampal volume loss in early alzheimer’s
disease in relation to apoe genotype and biomarkers,” Brain, vol.
132, no. 4, pp. 1067–1077, 2009.

[5] R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre,
P. Boutin, D. Vincent, A. Belisle, S. Hadjadj et al., “A genome-wide
association study identifies novel risk loci for type 2 diabetes,”
Nature, vol. 445, no. 7130, pp. 881–885, 2007.

[6] J. Flannick, G. Thorleifsson, N. L. Beer, S. B. Jacobs, N. Grarup,
N. P. Burtt, A. Mahajan, C. Fuchsberger, G. Atzmon, R. Benedik-
tsson et al., “Loss-of-function mutations in slc30a8 protect against
type 2 diabetes,” Nature genetics, vol. 46, no. 4, pp. 357–363, 2014.

[7] B. D. Gelb and W. K. Chung, “Complex genetics and the etiology
of human congenital heart disease,” Cold Spring Harbor perspectives
in medicine, vol. 4, no. 7, p. a013953, 2014.

[8] Y. Li, N. T. Klena, G. C. Gabriel, X. Liu, A. J. Kim, K. Lemke,
Y. Chen, B. Chatterjee, W. Devine, R. R. Damerla et al., “Global
genetic analysis in mice unveils central role for cilia in congenital
heart disease,” Nature, vol. 521, no. 7553, pp. 520–524, 2015.

[9] M. A. Nalls, N. Pankratz, C. M. Lill, C. B. Do, D. G. Hernandez,
M. Saad, A. L. DeStefano, E. Kara, J. Bras, M. Sharma et al., “Large-
scale meta-analysis of genome-wide association data identifies six
new risk loci for parkinson’s disease,” Nature genetics, vol. 46,
no. 9, pp. 989–993, 2014.

[10] A. Verstraeten, J. Theuns, and C. Van Broeckhoven, “Progress in
unraveling the genetic etiology of parkinson disease in a genomic
era,” Trends in Genetics, vol. 31, no. 3, pp. 140–149, 2015.

[11] S. Przedborski, “The two-century journey of parkinson disease
research,” Nature Reviews Neuroscience, vol. 18, no. 4, pp. 251–259,
2017.

[12] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[13] T. Yang, J. Wang, Q. Sun, D. P. Hibar, N. Jahanshad, L. Liu,
Y. Wang, L. Zhan, P. M. Thompson, and J. Ye, “Detecting genetic
risk factors for alzheimer’s disease in whole genome sequence
data via lasso screening,” in Biomedical Imaging (ISBI), 2015 IEEE
12th International Symposium on. IEEE, 2015, pp. 985–989.

[14] O. Kohannim, D. P. Hibar, J. L. Stein, N. Jahanshad, X. Hua,
P. Rajagopalan, A. Toga, C. R. Jack Jr, M. W. Weiner, G. I. De Zu-
bicaray et al., “Discovery and replication of gene influences on
brain structure using lasso regression,” Frontiers in neuroscience,
vol. 6, p. 115, 2012.

[15] T. Yang, J. Liu, P. Gong, R. Zhang, X. Shen, and J. Ye, “Absolute
fused lasso and its application to genome-wide association stud-
ies,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’16). ACM,
2016, pp. 1955–1964.

[16] Y. Li, J. W. Wang, T. Yang, J. Chen, C. Shen, L. Liu, L. Zhan,
D. P. Hibar, N. Jahanshad, Y. Wang, S. D. Zhao, P. Thompson, and
J. Ye, “Identification of alzheimer’s disease risk factors by tree-
structured group lasso screening,” The IEEE International Sympo-
sium on Biomedical Imaging, 2016.

[17] J. Wang and J. Ye, “Multi-layer feature reduction for tree structured
group lasso via hierarchical projection,” in Advances in Neural
Information Processing Systems, 2015, pp. 1279–1287.

[18] J. K. Pritchard and M. Przeworski, “Linkage disequilibrium in hu-
mans: models and data,” The American Journal of Human Genetics,
vol. 69, no. 1, pp. 1–14, 2001.

[19] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple
tasks with kernel methods,” Journal of Machine Learning Research,
vol. 6, no. Apr, pp. 615–637, 2005.

[20] J. Chen, L. Tang, J. Liu, and J. Ye, “A convex formulation for
learning shared structures from multiple tasks,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM,
2009, pp. 137–144.

[21] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task
regression with structured sparsity,” in Proceedings of the 27th Inter-
national Conference on International Conference on Machine Learning.
Omnipress, 2010, pp. 543–550.

[22] J. Wang, J. Zhou, P. Wonka, and J. Ye, “Lasso screening rules
via dual polytope projection,” in Advances in Neural Information
Processing Systems, 2013, pp. 1070–1078.

[23] J. Wang and J. Ye, “Safe screening for multi-task feature learning
with multiple data matrices,” in International Conference on Machine
Learning, 2015, pp. 1747–1756.

[24] J. Liu and J. Ye, “Moreau-yosida regularization for grouped tree
structure learning,” in Advances in Neural Information Processing
Systems, 2010, pp. 1459–1467.

[25] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature
learning,” in Advances in neural information processing systems, 2007,
pp. 41–48.

[26] J. Fan and J. Lv, “Sure independence screening for ultrahigh
dimensional feature space,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 70, no. 5, pp. 849–911, 2008.

[27] L. E. Ghaoui, V. Viallon, and T. Rabbani, “Safe feature elimination
for the lasso and sparse supervised learning problems,” arXiv
preprint arXiv:1009.4219, 2010.

[28] M. A. Hanson, “Invexity and the kuhn–tucker theorem,” Journal of
mathematical analysis and applications, vol. 236, no. 2, pp. 594–604,
1999.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2816029, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 12

[29] B. S. Mordukhovich and N. M. Nam, “Geometric approach to
convex subdifferential calculus,” Optimization, vol. 66, no. 6, pp.
839–873, 2017.

[30] E. M. Reiman, K. Chen, G. E. Alexander, R. J. Caselli, D. Bandy,
D. Osborne, A. M. Saunders, and J. Hardy, “Functional brain
abnormalities in young adults at genetic risk for late-onset
alzheimer’s dementia,” Proceedings of the National Academy of Sci-
ences, vol. 101, no. 1, pp. 284–289, 2004.

[31] M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, “Within-
subject template estimation for unbiased longitudinal image anal-
ysis,” Neuroimage, vol. 61, no. 4, pp. 1402–1418, 2012.

[32] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira,
D. Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly et al.,
“Plink: a tool set for whole-genome association and population-
based linkage analyses,” The American Journal of Human Genetics,
vol. 81, no. 3, pp. 559–575, 2007.

[33] A. E. Shearer, R. W. Eppsteiner, K. T. Booth, S. S. Ephraim, J. Gur-
rola II, A. Simpson, E. A. Black-Ziegelbein, S. Joshi, H. Ravi, A. C.
Giuffre et al., “Utilizing ethnic-specific differences in minor allele
frequency to recategorize reported pathogenic deafness variants,”
The American Journal of Human Genetics, vol. 95, no. 4, pp. 445–453,
2014.

[34] S. Rodriguez, T. R. Gaunt, and I. N. Day, “Hardy-weinberg equi-
librium testing of biological ascertainment for mendelian random-
ization studies,” American journal of epidemiology, vol. 169, no. 4,
pp. 505–514, 2009.

[35] Y. Li, C. Willer, S. Sanna, and G. Abecasis, “Genotype imputation,”
Annual review of genomics and human genetics, vol. 10, pp. 387–406,
2009.

[36] Y. Li, C. J. Willer, J. Ding, P. Scheet, and G. R. Abecasis, “Mach:
using sequence and genotype data to estimate haplotypes and
unobserved genotypes,” Genetic epidemiology, vol. 34, no. 8, pp.
816–834, 2010.

[37] R. M. Kuhn, D. Karolchik, A. S. Zweig, T. Wang, K. E. Smith, K. R.
Rosenbloom, B. Rhead, B. J. Raney, A. Pohl, M. Pheasant et al.,
“The ucsc genome browser database: update 2009,” Nucleic acids
research, vol. 37, no. suppl 1, pp. D755–D761, 2008.
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