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Abstract—Feature selection plays a significant role in dealing with high-dimensional data to avoid the curse of dimensionality. In many
real applications, like video semantic recognition, handling few labeled and large unlabeled data samples from the same population is a
recently addressed challenge in feature selection. To solve this problem, we propose a novel semi-supervised feature selection method
via insensitive sparse regression (ISR). Specifically, we compute the soft label matrix by the special label propagation, which can
predict the labels of the unlabeled data. To guarantee the robustness of ISR to the false labeled instances or outliers, we propose
Insensitive Regression Model (IRM) by capped l2-1,,-norm loss. The soft label is imposed as the weights of IRM to fully utilize the label
information. Meanwhile, to perform feature selection, we incorporate 2, ,-norm regularizer with IRM as the structural sparsity constraint
when 0 < ¢ < 1. Moreover, we put forward an effective approach for solving the formulated non-convex optimization problem. We
analyze the performance of convergence rigorously and discuss the parameter determination problem. Extensive experimental results
on several public data sets verify the effectiveness of our proposed algorithm in comparison with the state-of-art feature selection
methods. Finally, we apply our method to video semantic recognition successfully.

Index Terms—Dimensionality reduction, Semi-supervised feature selection, Video semantic recognition, Insensitive sparse

regression, Capped l2-/,,-norm loss.

INTRODUCTION

1

N recent years, the dimensionality of data becomes larger
Iand larger—even more than millions of features with
the innovations of information techniques, while many of
these features may be irrelevant in many real applications,
e.g., face recognition [1], [2], [3], [4],0bject recognition [5],
[6], [7], video semantic recognition [8], [9], [10] and bioin-
formatics [11], [12], [13], [14]. The availability of massive
and high-dimensional data along with new scientific tasks
have reshaped statistical theory and data analysis. Directly
processing such data not only degrade its performance but
also is time-consuming. To solve this problem, many fea-
ture selection and feature extraction techniques have been
introduced for dimensionality reduction. Feature extraction
usually maps the original features into a lower dimensional
space [2], [4], [6], [7], [15], [16], [17], [18]. Compared with
feature extraction, feature selection identifies the optimal
subset of the original features. By maintaining the original
features, feature selection improves the interpretability of
the data, which is preferred in many real applications,
such as genetic analysis [12], [13], [19] and video semantic
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recognition [8], [20]. In addition, feature selection allows us
to just focus on the feature subset that we are concerned
about, but not the whole set. We focus on feature selection
in this paper for its superiority over feature extraction.

According to the availability of labels, feature selection
algorithms can be roughly classified into three groups: un-
supervised [3], [21], [22], [23], semi-supervised [19], [24],
[25], [26] and supervised algorithms [12], [13], [27], [28].
Without labels, unsupervised feature selection evaluates fea-
ture relevance by exploiting data variance and separability,
i.e. Laplacian Score (LapScor) [29], Multi-Cluster Feature
Selection (MCEFES) [30] and Infinite Feature Selection(InfFS)
[22]. Because discriminative information is enclosed in the
class labels, supervised feature selection often selects dis-
criminative features by evaluating features correlation, i.e.
Fisher Score [31], Robust Feature Selection (RFS) [13], Spec-
tral feature selection (SPEC) [32] and Feature Selection via
Eigenvector Centrality(ECFS) [28], [33]. For the unsuper-
vised methods, it is very difficult to select the discriminative
features without available labels. For supervised methods,
sufficient labeled training data are required to guarantee
high accuracy and reliable performance. Nevertheless, it
is very expensive and time-consuming to label training
data in real-word applications, especially for video semantic
recognition. Supervised algorithms could fail to identify the
discriminative features in these cases. This motivates many
researchers to develop semi-supervised methods to select
the most discriminative features.

Semi-supervised feature selection belongs to the area of
Semi-Supervised Learning (SSL) [34], which is an effective
way of processing both labeled and unlabeled data. Inspired
by SSL, semi-supervised feature selection algorithms use
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the local structure of both labeled and unlabeled data to
select the discriminative features. For example, He et al. [35]
proposed Locality Sensitive Discriminant Feature by con-
structing two graphs, i.e. within-class graph and between-
class graph, to discover both geometrical and discriminant
structures. Similarly, Xu et al. [25] adopted manifold reg-
ularization to consider the geometry of data distribution,
and then proposed a new Discriminative Semi-Supervised
feature selection via Manifold Regularization [25] which
selects features through maximizing the classification mar-
gin between different classes. After analyzing the popular
trace ratio criterion in dimensionality reduction, Nie et al.
[19] proposed an efficient semi-supervised Feature Selection
algorithm with Trace Ratio Criterion (TRCFS).

However, in practice, false labeled samples often exist in
the real datasets. For example, in image processing, many
datasets are obtained from Internet and annotated by non-
professional technician, such as website image annotation,
which will generate the inaccurate label information. In
data mining, many spam detection datasets are collected
from different sources, such as Email server, Website and
social networks etc. Different persons annotate the data with
different background knowledge and personality, which
will lead to mismatching of labels. When the false labeled
instances or outliers exist in the training data, traditional
semi-supervised feature selection methods robustness per-
formance can be improved.

Besides, semi-supervised feature selection has been
widely investigated due to its importance in real applica-
tions. In this paper, we focus on video semantic recognition,
which plays a crucial role in multimedia analysis. Obvi-
ously, video is a type of high-dimensional data. In video se-
mantic recognition, the number of labeled videos is always
very small while a large amount of video clips are unlabeled.
In this case, Ma et al. [20] proposed a Structural Feature
Selection with Sparsity (SFSS), which can jointly select the
most relevant features by manifold learning and Iz 1-norm
regularization. To use the multi-label information of videos,
Ma et al. [36] proposed subspace feature uncovering with
sparsity (SUFS), which uncovers a feature subspace shared
among multiple different classes. By integrating the polyno-
mials and Greens functions into the spline basis functions,
Han et al. [8] proposed Semi-Supervised Feature Selection
via Spline Regression (S*FS°R). Although these methods
are successfully applied to multimedia data understanding,
such as image annotation and video concept detection, their
performance can still be improved in real applications.

To select a subset of more discriminative features from
few labeled and large unlabeled high-dimensional data, we
propose a novel semi-supervised feature selection algorithm
via Insensitive Sparse Regression (ISR). To enlarge label
information of training data, label propagation is adapted
to calculate the soft labels of both labeled and unlabeled
data by using the local structural information of high dimen-
sional data. To improve the robustness to the false labeled
data or outliers, we propose Insensitive Regression Model
(IRM) by adding the soft label information into capped [2-
lp-norm loss function. And then we incorporate IRM and
l2,q-norm regularizer into the formulation of ISR to perform
feature selection task. Although this formulation is a non-
convex problem with respect to two groups of parameters,

we propose an efficient method to solve it. We analyze the
performance of ISR in aspects of the convergence behav-
ior and parameter determination. Extensive experimental
results on different kinds of data sets verify the performance
of ISR simultaneously. Finally, we provide the main proce-
dure of ISR for multimedia analysis and apply it to video
semantic recognition. The main contributions of this paper
are summarized as:

(1) We present Insensitive Regression Model (IRM) to
maximize the use of the enlarged label information obtained
by label propagation.

(2) We propose a novel semi-supervised feature selection
approach based on Insensitive Sparse Regression (ISR). It
incorporates capped l2-l,-norm loss function with /3 ,-norm
regularization, which can improve the robustness perfor-
mance to the noise and false labels.

(3) We present an efficient method to solve our proposed
non-convex formulation and analyze the performance of
ISR. We also verify the effectiveness of our method accord-
ing to extensive experimental results on several data sets.

(4) We apply ISR into video semantic recognition appli-
cations and demonstrates its promising performance.

The rest of this paper is organized as follows. Section
II provides notations and related work. We formulate the
proposed ISR algorithm and provide an effective solution
to this problem in Section III. In Section IV, We analyze
the convergence behavior, parameter determination, and
sensitivity to false labels of ISR exhaustively. Section V
provides promising comparison results on various kinds
of data sets. In Section VI, we illustrate the main process
of ISR for multimedia and apply ISR into video semantic
recognition. Finally, Section VII presents the conclusion.

2 RELATED WORK
2.1 Notations and Definitions

In this paper, matrices and vectors are written as boldface
uppercase letters and boldface lowercase letters, respec-
tively. For instance, a matrix W € R**’, its i-th row, j-
th column are denoted by w'’, w; respectively. For semi-
supervised feature selection, the training set X € REx™
often consists of two parts: the labeled data X; and the
unlabeled data Xy . Without loss of generality, let the first
ni(n; < n) samples in X is the labeled data X and its
corresponding labels Y. = [y1,y2,...,yn] € {0,1}9%™
are provided for the C' semantic categories. Then we have
X = [X,Xy] and n = n; + ny. Define the initial label
matrix Y = [Yl,...,Yn]T e R (CHD) where Y; €
RET1(i = 1...n) is the initial label of the i-th data. Let
F; € RYT1(i = 1...n) is the learned soft label of the i-
th data point where 0 < F;; < 1,5 = 1...C + 1. For the
labeled data, if x; is labeled the j-th class then Y;; = 1
and 0 otherwise. For the unlabeled data point x;, Y;; = 1
when j = C + 1 and 0 otherwise. Additionally, we define
F = [F1,...,F,]7 € R+ s the predicted soft label
matrix, I as an identity matrix, 1,, = [1,...,1]" € R"*! and
0,=10,...,07 e R"*L.

2.2 Label Propagation

Label propagation is one of the most important methods in
Semi-Supervised Learning (SSL) [34]. The basic idea is to
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propagate label information from labeled data to unlabeled
data according to the training data distribution [37]. In the
literature, many traditional label propagation methods, such
as Gaussian Field and Harmonic Function (GFHF) [38] and
Local and Global Consistency (LGC) [39], are proposed to
solve this problem. Based on the spectral graph theory, LGC
and GFHEF are unified into the following framework:

F* = argmin |[F||3 + u||F - Y%, (1)

where || F||3 represents global smoothness over graph G and
|F —Y||% measures the empirical loss for labeled samples. y
balances global smoothness and empirical loss terms. Specif-
ically, in LGC, the global smoothness function is defined by
the semi-inner product |F||Z = (F,AF) = Tr(FTAF),
where A is the normalized graph Laplacian. If we set
1 = oo and use standard graph Laplacian quantity L for
the smoothness term, i.e. |F||g = Tr(FTLF), the above
framework reduces to the formulation of GFHE.

To improve the robustness to outliers, Nie et al. [37]
proposed GGSSL based on random walks. In each random
walks step, the label information of each data point includes
two parts of information from its neighbors and its initial
label. Thus the label information of data at ¢t + 1 iteration is
propagated as

F(t+1) = L,PF(t) + 1Y, @)

where, 1, is a diagonal matrix with the i-th entry I, = o,
Is = I-1,. a balances the information of x; from the initial
label and its neighbors. P = D™ 'A is a stochastic matrix,
where A is the weight matrix of X and D is a diagonal
matrix with the i-th element D;; = > j Ajj. Finally, Eq. (2)
will converge to the following equation.

p— 3 j— — _1
F = lim F(t) = (I-L.P) 'IY. )

LGC and GFHEF can also be interpreted as random walks,
but the transition probability matrix and the stop condition
are different. In LGC and GFHEF, the walks can only stop at
the labeled data points, while in GGSSL, the random walks
can stop at the labeled or unlabeled data points. To some
extent, LGC and GFHF are two special cases of GGSSL.

2.3 Representative Feature Selection Methods
2.3.1 Unsupervised Feature Selection Methods

(1) LapScor is one of the famous unsupervised feature se-
lection approaches. The basic idea of LapScor is to evaluate
the features according to their local preserving power. First,
we construct a kNN graph G with n nodes and compute a
weight matrix A on G. Then, the Laplacian score for the i-th
feature is computed as

a; = £ Lt/ Df;, @)

where D is a diagonal matrix whose element D;; =
' Ay, L=D-Aandf; = f;, - f' D11/1"D1 Finally,
we rank the features based on {a;}¢; and choose the
features corresponding to the s largest value a;.

(2) MCFS computes the embedding by Laplacian Eigen-
map(LE) [16] at first and then use regression coefficient to
rank each feature. The formulation of MCFS is

. —XxXT ,2 )
Yy — W; +/BHWZ||1’ (5)

min ‘
w; ER4

where y; is the i-th feature of new low-dimensional repre-
sentation. Clearly, the problem (5) is known as Lasso, which
has been widely investigated in literature. After computing
the regression coefficient, they define the MCFS score for the
j-th feature as v; = max; |w; ;|. Similar with LapScor, we
rank and select the features based on the values {v;}9_;.

(3) InfFS [22] is the recent unsupervised graph-based
filter method. InfFS builds a graph whose node is each
feature. In the graph, a path is a selection of features. Thus,
it assigns a score of “importance” to each feature by taking
into account all the possible feature subsets as paths on a
graph, that is

Aij = aoj; + (1 — oz)cij, (6)

where a € [0,1], 0;; = max(o;,0;) with o; being the
standard deviation of i-th feature f; and ¢; = 1 —
|spearman(f;, f;)| with spearman(-) indicating Spearman’s
rank correlation coefficient. The final energy scores for each
feature are obtained by

s = S1, (7)

where S = (I — rA)~" — I encodes all the energy informa-
tion of features. By ranking the energy scores, we can obtain
a rank for the feature to be selected.

2.3.2 Supervised Feature Selection Methods
(1) Fisher score(FisherScor) [31] is a supervised feature se-
lection method. It selects the features such that the feature
values of samples within the same class are small while the
feature values of samples from different classes are large.
Fisher score of each feature f; is evaluated as:
c c
Fishers(fi) =Y nj(pi; —pa)*/ Y njols,  (8)
Jj=1 Jj=1

where nj, pi, pi; and J?j are the number of instances in
j-th class, mean value of f;, mean value of f; for samples
in j-th class and variance of f; for samples in j-th class,
respectively. Similar to LapScor, the top k features is greedily
selected with the largest Fisher scores.

(2) RFS is another supervised feature selection. In prac-
tice, the noisy instances or outliers are common in real world
applications. To solve this problem, Nie et al. [13] proposed
a robust feature selection (RFS) methods to employ joint
{2,1-norm minimization on both loss and regularization. The
objective function of RFS is

min ‘WTX—YH F AWl )
2,1

(3) ECFS [28], [33] is one of graph-based supervised
methods and obtains the important nodes through the
Eigenvector Centrality(EC). Similar with InfFS, ECFS ranks
features by identifying the most important nodes on an
affinity graph where features are the nodes. Meanwhile, the
adjacency matrix A of the graph is given by

A=oK+(1-a)x, (10)

where Y;; = max(o;,0;) and K is a kernel matrix.
K = k- m” with k; is Fisher information and m; is the
mutual information between the ranked features and the
features truely related to their classes. By the graph theory,
the feature scores are obtained by computing the principle
eigenvector of A.
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2.3.3 Semi-supervised Feature Selection Methods

(1) TRCEFS [19] is an efficient semi-supervised feature se-
lection algorithm to select relevant features. To solve the
problem that trace ratio criterion in dimensionality reduc-
tion tends to select features with very small variance, TRCFS
adopts the trace ratio criterion for feature selection with a re-
scale preprocessing. The objective function of TRCFS can be
formulated as

arg max tr(WTS,W) /tr(WTS, W), (11)
where two scatter matrices S,, and S, based on soft labels
matrix F are computed by

Sw = %X(B - F.DF)X" (12)

S, = %X(FCDFZ - %BllTBT)XT, (13)
where F. is formed by the first C' columns of F, B and D
are diagonal matrix, the i-th diagonal elements are B;; =
>_; Fijand Di; = 1/ Fji, respectively.

(2) S?’FS?R [8] is another famous semi-supervised feature
selection approach. It exploits the local geometry underlying
the huge amount of unlabeled data by splines developed
in Sobolev space. Integrating the polynomials and Greens
functions into the local spline, it preserves data distribution
and label information by combining within-class and spline
scatters matrix. Based on the idea of graph embedding,
S°FS®R computes the optimal W by adding l2,1-norm regu-
larization with the orthogonal constraint:

Mgern\i;\r/l=1 tr(WTMW) + AW, 4, (14)

where M = Sy + uE, Sy is the within-class scatter matrix
and = represents the spline scatter matrix. The within-class
scatter matrix Sy is estimated by Eq.(15).

c .
SW:ZF Y (x—my)(x—my)7,
j=1

J XEw;

(15)

where m; is the average vector of the j-th class. However,
when false labeled instances or outliers exist in the training
data, the performance of S?’FS*R will be degraded.

3 SEMI-SUPERVISED FEATURE SELECTION VIA IN-
SENSITIVE SPARSE REGRESSION

In this section, we first introduce the formulation of our
method formally. Then we propose a two-step strategy to
solve the proposed problem. For convenience, we refer our
proposed formulation as semi-supervised feature selection
via Insensitive Sparse Regression (ISR).

3.1 Soft Labels Computation via Label Propagation

Inspired by Semi-Supervised Learning (SSL) [19], we pro-
pose to use a special label propagation method via linear
regression based on manifold regularization, which can
detects outliers and false labeled samples in data effectively.
A crucial component of a graph based SSL method is the
estimation of a weighted graph from the training data X.
There are many methods to construct the weight matrix
A of a graph in the literature, such as binary weighting,

Gaussian kernel and LLE weighting. In this paper, we build
the weight matrix A of the graph by Gaussian kernel in Eq.
(16), where the hyper parameter ¢ in the Gaussian function
is automatically determined by X [40],

Ay = e Isll*/e® (16)
where 0 = 71/d/In(n), 7 = 0.3, d is the average of squared
Euclidean distances for all pairs of data samples and n is the
number of training data.

Similar to GFHF [34] and LGC [39], the soft labels for
the unlabeled data can be computed by imposing label
fitness and manifold smoothness constraints. Therefore, the
objective function of our label propagation can be unified as
the following weighted linear regression model:

F = arg mbin tr(FTLF) + tr[(F — Y)TU(F -Y), 17

where L = D — A is the Laplacian matrix, U is a diagonal
matrix with the i-th entry Uy; = mif i = 1,...,l and Uy =
Nuifi =14+1,...,l+u.m = Neo (Mo is a very large number)
and 7, = 0 are the weighting parameters for the labeled
and unlabeled data points respectively. When U = I, the
problem of (17) reduces to the formulation of Eq. (1). Y is
initialized as described in Subsection 2.1.

Since Eq. (17) is an unconstrained quadratic program-
ming problem with respect to ', we can obtain its closed
form solution. Taking the derivative of Eq. (17) with respect
to F and setting it to zero, we have

LF+UF-Y)=0,=>F=(L+U)"'UY. (198)

Note that the obtained label for each data is the proba-
bilistic value. It can be easily verified that the sum of each
row of F' is equal to 1. We have

L = On UY1 (L+U)1
= = n
Yicii =1, ot (19)

= (L+U)'UY1lcs1 =1, & Flogg = 1o

Therefore, F;j; can be seen as an estimation of the pos-
terior probability of x; belonging to the j-th class. When
j = C +1, Fj; is the probability of i-th point which stops at
one of the unlabeled data point after random walks. In other
words, it denotes the probability of x; to be the outliers. In
the next subsection, it is convenient to select discriminative
features via label regression with soft labels.

3.2 Formulation of ISR

To obtain the optimal W, the regression model has been
widely applied into many applications for its efficiency and
simplicity. The difference of various regression models lies
in the selection of various loss functions and regularizer.
In literature, there are many ways to define loss functions,
like hinge loss, l2-norm loss [37], and [l2,1-norm loss [13].
However, [2-norm loss and hinge loss are highly susceptible
to the false labeled samples or outliers in training data [13],
[23]. For semi-supervised learning, l2,1-norm loss only uses
labeled data and ignores many unlabeled data. Meanwhile,
in real-world applications, the false labeled samples often
appear in the data sets and the number of labeled data is
few while large amount of unlabeled samples exist. Thus,
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traditional loss functions may not get the optimal perfor-
mance in this case.

In general, we adopt p power of l2-norm to measure the
loss of instances, that is ||WTxi +b-—t; Hg and 0 < p < 2.
The soft label matrix F includes more sufficient and richer
semantic information than only labels of labeled data after
label propagation. It can enlarge the discriminative and
robust performance when it is used in our regression model.
Therefore, F is introduced into our formulation as the
weight of its corresponding loss of each data and each
semantic class, that is Fj; min(|[W”x; + b —t;|| ). By
analysis of label prorogation, F;; can be seen as an esti-
mation of the posterior probability of x; belonging to the
j-th class. In other words, if x; does not belong to the j-
th class, the value of F;; will be very close to zero, even
for the false labeled data or outliers. And then the value of
Fyymin(|[WTx; + b — ;|| , ) will also become very close
to zero. The current loss has little effect on the optimization
of the optimal W. Thus the influence of the false labeled
instances or outliers in the training data is further removed
by the soft label matrix F. To eliminate the impact of false
labeled samples or outliers and measure the loss of the
current data point x; with the j-th class simultaneously, we
propose to use capped l2-l,-norm loss function

min(HWTxi +b

"o (20)
J 2 »g )
under the constraints ¢ > 0 and 0 < p < 2, where

t; =[0,...,0,1,0,...,0]” is the class indicator vector for
—_— —

7j—1 c—jJ

the j-th class, b € RCXl is the bias term, ¢ > 0 is a
threshold parameter. If x; is a false labeled point or an
outher point in X, the values of |[W"x;+b—t,|; for
j = ,C, are all very large. The hard- thresholdmg
operator snnply sets min(|W”x; + b — t; H2 ,€) to e if the
value of HWTxi +b—t; ||12j is larger than e. Therefore, the
impact of false labeled data or outlier will be eliminated.

In a word, the formulation of our proposed regression
model named Insensitive Regression Model (IRM) is sum-
marized as

M§

ZF’] min HW x; +b —t]H
15=1

21

i

Note that l2,1-norm and [>-norm loss are two special cases
of capped [2-l,-norm loss and they are p = 1,6 — oo and
p = 2,e — oo, respectively. The threshold ¢ and F are able
to jointly accelerate the convergence of objective function.

The second term of ISR is the regularizer which is
designed for feature selection. Evoked by the basic idea
of sparse regression [13], we also want to add sparse con-
straints on transformation matrix to measure its sparsity in
regression. The magnitude of each row of W represents
the weight of each feature. To perform feature selection,
we need to push some rows of W shrink to zero, and
then remove the corresponding features. Consequently, the
corresponding features can be neglected since these features
are redundant for regression.

From the sparsity perspective, the ideal regularization
term will be [2 0-norm regularizer [12]. However 2 o-norm
minimization problem is NP-hard and be very difficult
to solve directly, due to its non-convex and non-smooth

properties. Lots of researchers prefer to choose the convex
l2,1-norm as the regularizer of regression model [13], [27].
Because [2,1-norm minimization has rotational invariant
property and can be solved by an iterative algorithm [13]
directly. However, we approximate the /3 o-norm by Iz 4-
norm with better sparsity when 0 < ¢ < 1 as in [41], [42],
[43], [44]. The Iz 4-norm of W is the ¢ power of l>-norm

of w*, i.e. the i-th row of W to measure its contribution in
regression,
d q d c /2
2
S (W)L = Xwul)  =iwig, @
i=1 i=1 \j=1

where g keeps the balance between the sparsity and convex-
ity of the regularizer and 0 < ¢ < 1. Obviously, when ¢ = 1,
the above formulation will reduce to l2,1-norm regularizer.
The closer the value of ¢ is to zero, the better approximation
the objective function is to the original feature selection
problem. When ¢ = 0, the regularizer is non-convex. When
g = 1, it is the closest convex approximation of I2 o-norm.

Finally, by combining Eq. (21) and Eq. (22), the formula-
tion of ISR can be summarized as follows.

rmn ZZF” min HW X; —I—b—th e)+v||W|1 o (23)

i=1j=1

where  controls the regularization effect.

Similar with [3], [13], we adopt the l2-norm of w! to
evaluate the importance of each feature. The larger this
value is, the more important this element is. Once we obtain
the optimal transformation matrix W*, we can rank each
feature f; according to ||W” || 5 in descending order and then
select the top ranked features. In the following, we select a
fixed number, i.e., s, features for evaluation.

Since IRM in Eq. (21) is non-convex, the problem (23)
is also non-convex. It is difficult to get its closed solution
directly. In this paper, we propose an efficient iterative
algorithm to solve our proposed ISR for 0 < ¢ < 1. The
details of optimization will be introduced in next subsection.

3.3 Optimization and Solution

Since both of terms are non-convex, ISR cannot be solved
directly. Based on the concept of function, the functions
f(W b) = HWTXi +b-— thZ and g(W,Db) € are
continuous with respect to W and b. Thus the term
min(||[W”x; +b — thg,s) is continuous. By Proposition
3.2.3 and Proposition 3.2.8 of [45], we will know that the
conditions of problem (23) hold. Therefore, we can use
Lagrangian multiplier method to solve it. In [13], Nie et al.
adopted an iterative reweighed algorithm to solve the /2 1-
norm minimization problems. In [43], Gong et al. proposed a
common procedure for solving the [2-l1-norm optimization
problem. Evoked by these works, we replace the original
non-convex formulation as a convex problem with the
proved convergence behavior.
Denote E-j =

p—2
gFij ‘WTXi +b— tj H
2

Ind(HWTxi +b- th: <e) (24)

where Ind(-) is an indicative function, which is equal to

1 if HWTxi +b—tj||§ < ¢ and 0 otherwise. Then the
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formulation in Eq. (23) will be converted into the following
reweighted least square regression problem with l2 g-norm
regularization:

mln Z Z Fw

’Lljl

Wit bt 4o WL, 29

According to the matrix calculus theory, Eq. (25) will be
expanded to the following formulation.

min $2 5 Fy (Wi +b) T (Wi +b) 4+ 5 FytTh

bi=1;= 2%

=

n = T
-23 21 Fij (WTxi + b) tj + ||W||2,q
i=1;=

(26)
Because t; t; = 1 is a constant with respect to W and b,
we can omit the second term. Thus, the above formulation

is equal to
T
J(W,b) = Tr {(WTX + b1T) S (WTX + b1T) }
27)

_ Ty [F (WTX + blT)} W,

Where S is a n-dim diagonal matrix with the i-th element

being o
Si=3y _ Fi.
j=

Recall the basic idea in solving the sparse regularization
problem as in [13], we take the derivative of [[W||3  with
respect to W. For convenience, we denote /(W) = ||WH
When w* # 0 for i = 1,...,d, the derivative of {(W) wrt

(28)

W is
(W)/OW = DW, (29)
where D is a diagonal matrix with the i-th element as:
. 11g—2
Dis = 1w (30)
2 2

Recalling the definition of Dj;, if w? # 0, we can
get Tr(W'DW) [W][3 ,/2. Thus, the minimization
of Tr(WTDW) will add the row sparsity on W when
0 < ¢ < 1. When D and F are fixed, the derivative of J in
Eq. (27) can be regarded as the derivative of the following
objective function.

J(W,b,F,D) = Tr [(WTX + b1T> S(WTX + blT)T}

— Ty [F <WTX + b1T)] +ATr(W DW).

(€]

With this approximation, ISR can be effectively solved

with proved convergence. Although the problem in Eq. (31)

is much easier than that in Eq. (23), it is also difficult to get

its solution directly, since F is also dependent on W and b.

Recalling the definition of S in Eq. (28), we know that when

F and D is fixed, Eq. (31) becomes a regularized least square

problem. Take derivative of J(W,b,F,D) with respect to

W and b and set them to zeros, the optimal solutions to the
problem in Eq. (31) are

8J(W,b,F,D)

W =~1DW + XSX"W + X(S1b” — F)

32)

TABLE 1
The Main Procedure of Proposed ISR.

Input: Data set {x;|i =1,2,---
neighborhood size k, and selected feature number s.
Output: Selected feature index set {r1,r2, -+ ,7s}.

,n} with Y, balance parameter ~, ¢,

Stage one: Computing Soft Labels via Label Propagation

1. Construct the nearest neighborhood graph G;

2. Compute the similarity matrix A and soft label F by Eq. (17);
Stage two: Alternative optimization

1. Initialize D = Iy 4 and Fi; = F}j;

2. Alternatively update F, D and W until convergence.

a. Fix D and F, update W and b by solving the problem Eq. (34);

b. Fix W and b, update F and D by Eq. (24) and Eq. (30);
Stage three: Feature selection
1. Compute the scores for all features {||W;||2}5_1;
2. Sort these scores and select the largest s values. Their

corresponding indexes of the selected features {ri,r2, - ,7s}.
W =w'xs1+17s1ib-F"1 (33
! p— B - —1 -
= e ( W Xs) 1, W= [XLSX +7D] XC,F,
(34)
where C; =1 — 1TSlSllT s = CsS.

When W and b are computed, we can update F, S and
D by employing the formulations in Eq. (24), Eq. (28) and
Eq. (30) directly.

In summary, we solve the optimization problem in Eq.
(27) in an alternative way. More concretely, we initialize
D = I;xq and Fj; = F,; and update W and b by Eq.
(34). After that, we fix W and b, and then compute F, D
and S. Additionally, the experimental results show that our
proposed algorithm converges fast. The number of iterations
is often less than 15. The main procedure of ISR is listed in
Table 1.

Remark 1. When computing D, its diagonal element D;; =

g HwiH?2 could be very close to zero but
¢ o can be zero theoretically. In this case,
we reqularize Dy; as Dy; = q/ (2 HwiH?q + 1), where T is

a very small constant. When T — 0, it z's easy to see that
q/ 2 ||w* ||2 + 7) approximates & ||w||2~

4 DISCUSSIONS
4.1 Convergence Analysis

As mentioned above, the formulation of ISR is solved in
an alternative way; namely, we fix one group of variables
and optimize the other. In this subsection, we will give a
theoretical analysis about the convergence of our method in
Eq.(23) by the above iteration process. The following two
propositions show that we can obtain the optimal solution
in each step.

Proposition 1. The procedures of ISR shown in Table 1 will
monotonically decrease the objective function of (31) in each step.

Due to the limitation of space we would like to get rid of
the detailed proof of proposition 1 in the main parts of this
paper. The detailed proof of proposition 1 is presented on
supplementary material. The main idea of the proof is listed
as follows.
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According to Lemma 1 (listed in the supplementary
material), we have

[t o/t -

Assume that we have derived D and F as D) and f‘( k)
in the k-th step. In the (k + 1)-th iteration, we fix D and
F as Dy and f‘(k) and then optimize W and b. When F
and D are fixed in Eq. (31), the formulation in Eq. (31) is the
regularized least square regression model. In other word,
there is a closed solution for Eq. (31) in this case. So we have
the following inequality:

(k+1)H /H"V(k)H <1—% (35)

J(W (k41)s D1y F iy, D) < J(W(k)»b(k),}?‘(k)yD(k)()é

Combining Eq. (35) and Eq. (36), we can get
T
" [(W&”X b 1”) S(WH X 4 by 17) }

—2Tr [F(k) (W(7;+1)X + b(k+1)1T>]

<Tr {(W?,Z)x +bu1") s(WhX + b(,c)lT)T}

d

~ . q

—2Tr [F(k) (VV (Tk)X + b(k) lT)] + ’YZ szk) H2,
i=1

_ _ (37)
where w(;, ;) and w{,, are the i-th row of the matrix
W (r4+1) and W ;) respectively. That is to say, the equation
is equivalent to the following inequality

J(W (1), et 1) F iy, Diegny) < J(W(kyb(k)j(k),D(kzgs)
Similar to [43], we prove that the procedure of updating F( k)
also decreases the objective function value. In other words,
we have the following inequality holds:

J(W (k41)5 Bes 1) F 1), Dig1)) < (39)

J(W (151), et 1) F iy, Dieg))-

Finally, combining Eq. (38) and Eq. (39), we can arrive at

J(W (1), et 1) F o1y D)) < J(W(kyb(k)j‘(k),D(Xb)))-

This inequality indicates that the objective function in
Eq. (31) will monotonically decrease in each iteration until
the algorithm converges.

Proposition 2. The procedures of ISR shown in Table 1 will
monotonically decrease the objective function in Eq. (23) in each
step and then converge to the local optimum of the problem.

Based on the conclusion of proposition 1, we adopt the
similar strategy in [46] to prove it.

On the one side, in each iteration of ISR in Table 1, when
one group of variables is fixed, we can find the optimal
solution to the problem in (31). Thus the derived solution
of ISR satisfies the KKT condition of problem (31). Taking
the derivative w.r.t. W and b respectively and setting them
to zero, we get the KKT conditions Eq. (32) and Eq. (33) of
the problem (31).

(c) GFHF

(d) IRM

Fig. 1. Examples illustrating the sensitivity of IRM to the false labeled
instances on Two Moon data set. (a) shows the original data samples
and the selected labeled samples. (b)-(d) show the prediction results by
LGC, GFHF and IRM, respectively.

On the other side, according to optimization theory, the
Lagrangian function of Eq. (23) is

ZZFl]mln HW x; +b—t; H

1=1j=1

(41)

Taking the derivative w.r.t. W and b respectively and

setting them to zero, we get the KKT conditions of the

problem in Eq. (41). Using the matrix calculus, we can write
the KKT conditions of the problem in Eq. (41) as follows

% = ADW + XSX'W + XS1b” — XF,  (42)
W = w”x81+17S1b - FT1. (43)

According to the definition of D;; and F in the main
procedures of ISR, we can see that Eq. (42) and Eq. (43) are
the same as Eq. (32) and Eq. (33). Therefore, the converged
solution of Algorithm in Table 1 satisfies Eq. (42) and Eq.
(43), the KKT conditions of problem in Eq. (23). Thus the
solution of algorithm in Table 1 is a local minimal solution
to the problem in Eq. (23). The detailed proof of proposition
2 is also shown in supplementary material.

4.2 Computational Complexity Analysis

In this subsection, we analyze the computational complexity
of ISR. The computational cost of constructing the graph
Laplacian is O(n”d), where n and d are the number data and
features, respectively. Following the idea in [37], the label
propagation can be viewed as a process of random walks.
Given the weight matrix A, the computation complexity
of calculating the soft label matrix F' with (11) is O(knc),
where k and c are the number of neighbors and classes. The
major computatlonal cost of our ISR lies in the updating
of W = P;'Q., where Q, = X(I - 1#5;S11")F, P, =
X(I- 1TSlSllT) SXT 4+ 4D are a d x ¢ matrix and a
d x d matrix, respectively. The computational cost of matrix
inverting is O(d3). In fact, the computation of matrix inverse
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can be avoided. Note that we are aiming to compute Py ' Qs,
which is the solution of the following problem:

rr\l)%’nWTPSW —2w'Q,. (44)

The solution of this minimization problem can be get
iteratively using gradient descent method using the up-
dating formula: Wiy1 = Wi — a(PsW; — Qs), with a
computational cost of O(Td?c), where T is the number
of iterations and « is a step size of gradient. Therefore,
the total computational cost of our ISR is upper bounded
by O(Td?*c) + O(n*d) + O(knc). Moreover, the number of
iterations 7" and the number of classes c are often much less
than the dimension of features d for high dimensional data.
Thus, our algorithm can obtain the optimal W efficiently.

4.3 Sensitivity to False Labels

As adding capped Il2-l,-norm loss into IRM, ISR is in-
sensitive to the false labels or outliers. In this section, to
discuss the sensitivity of false labeled samples, we present
the robustness performance of IRM on a synthetic data.

These experiments include two parts: one is a simple ex-
ample showing the robustness performance of IRM (shown
in Fig. 1), another is the comparison of the average error
rates (listed in Table 2). We generate 250 samples per class of
two-moon artificial data randomly. After label propagation,
we only use IRM to learn the projection matrix W and
b without regularization term, that is v = 0 in ISR. And
then the labels of the training samples are predicted by
min {aj ‘aj = ||WTX+b—tj ,J = 1...0}.

" In the first experiment, we choose 10 labeled samples
which includes one sample with false label and the remain-
ing 240 unlabeled instances as shown in Fig.1(a). The results
of IRM and label propagation methods: LGC and GFHF
depict in Fig. 1. From the results in Fig. 1, we can see that
ISR can eliminate the effect of false labeled instances (as Fig.
1(d)) by IRM. For LGC and GFHF, as shown Fig. 1(b), even
in the case of only one false labeled sample for each class,
the instances around the false labeled points is still badly
affected after label propagation method.

To further analyze the performance of IRM, we compute
the average error rates under different ratios of false labels
in different number of labeled points. In this experiment,
we randomly select 10, 20 and 50 labeled samples with
{10%, 20%, 30%, 40%} false labeled instances from original
250 samples. Then we repeat the tests 50 times and calculate
the average error rates. The results are listed in Table 2.
Obviously, the error rates of IRM is much less than the
results of LGC and GFHF, and original ratios. For example,
when the number of labeled samples is 50 and the ratio of
false labeled samples is up to 40%, the error rate of IRM
is 29.05% less than label propagation and 28.06% less than
original ratio. Consequently, IRM can eliminate the effect of
the propagated label mistakes of false labeled samples and
is much more robust than label propagations, when its ratio
is less than fifty percent of labeled instances.

5 EXPERIMENTS
5.1 Data Description

In our experiments, eight public data sets with various
statistical characters are collected to present the perfor-

TABLE 2
The error rates of label propagation methods LGC, GFHF and IRM on
2D toy data with different number of labeled samples n; = {10, 20,50}
and different ratios of noisy instances {10%, 20%, 30%, 40%}.

n; || Ratio LGC GFHF IRM
10 10% 12.48+0.66 || 12.2740.70 1.31+0.25
20% 24.874+0.90 || 24.11+0.86 9.60+0.68
30% 32.80+£0.90 || 31.87+0.91 || 14.11+0.96
40% 40.53+0.83 || 39.74+0.78 || 25.74+1.24
20 10% 12.364+0.42 || 11.004+0.45 4.31+0.25
20% 22.11+0.55 || 20.70+0.57 5.461+0.30
30% 30.9440.64 || 28.97+0.74 7.91+0.63
40% 40.554+0.89 || 39.09+0.93 || 19.824+0.91
50 10% 7.9040.24 6.744+0.25 2.344+0.18
20% 20.74+0.32 || 14.93+0.29 3.554+0.22
30% 31.33+0.35 || 26.76+0.37 5.961+0.53
40% 40.994+0.57 || 39.07+0.46 || 11.94+0.75
TABLE 3
Data sets Descriptions
Dataset ~ Size Dim #Class Type
Umist 575 644 20 Image, Face
Coil20 1440 2048 20 Image, Object
USPS 9298 256 10 Image, Handwritten
PIE 11554 1024 68 Image, Face
KSA 20000 1590 10 Image, Action
MNIST 70000 784 10 Image, Handwritten
Epsilon 400000 2000 2 Variables, Vision
Covtype 581012 54 2 Variables, Forest

mance of different feature selection methods. These data
sets include five image data sets including Umist', Coil20?,
MNIST?, USPS?, PIE?, one action recognition data set Kinect
Skeleton Action (KSA)® and two large scale learning data
sets, Covertype’ and Epsilon®. All data sets are normalized
with zero-man and unit length. We summarize the character
of them in Table 3.

5.2 Evaluation Metric

To test the quality of selected features, we employ two
different kinds of evaluation metrics for the classification
task, i.e., the classification accuracy achieved by classifier
using the selected features; REDundancy rate (RED) [3]
contained in the selected features. The redundancy is a pop-
ular evaluation metric for feature selection. It measures the
quality of selected features directly, without employing the
subsequent tasks. This measurement assesses the averaged
correlation among all feature pairs. A large value indicates
that many selected features are correlated. Thus redundancy
is expected to exist in the set of selected features F.

To compute the classification accuracy, we use the lin-
ear Support Vector Machine classifier (SVM) [47] to per-
form classification on the data with selected features. We
randomly select a fixed number of labeled and unlabeled
examples from each category as training data and the rest

1. http:/ /images.ee.umist.ac.uk/danny/database. html

2. http:/ /www.cs.columbia.edu/CAVE/research/coil-20.html
3. http://yann.lecun.com/exdb/mnist/

4. http:/ /www.cad.zju.edu.cn/home/dengcai/Data/USPS

5. http:/ /www.uk.research.att.com/facedatabase.html

6. http:/ /www.cs.cmu.edu/ kevinma/data/KSA.mat

7. http:/ /archive.ics.uci.edu/ml/datasets/Covertype

8. http:/ /largescale.ml.tu-berlin.de/largescale/epsilon/
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Fig. 2. Classification accuracy of SVM with different number of selected features. The three numbers in brackets of legends represent
the times of win, balance and fail of ISR for ¢-test with a threshold of 0.05 statistical significance under different numbers of selected

features.

are assigned as testing data. Meanwhile, we take the results
of all features as baseline and compare ISR with six state-of-
the-art feature selection methods: Laplacian score (LapScor)
[29], MCEFS [30], Fisher score (FisherScor) [31], robust fea-
ture selection via joint /2 ;-norms minimization (RFS) [13],
TRCFS [19], S?FS?R [8], Infinite Feature Selection(InfFS) [22]
and Feature Selection via Eigenvector Centrality(ECFS) [28],
[33] on above eight public data sets, where the parameters ¢
and + are selected by grid search in a heuristic way. Other
parameters are empirically determined as the traditional
learning approaches [48], [49].

5.3 Comparison between ISR and Other Feature Selec-
tion Algorithms

We compare the classification accuracy and redundancy rate
(RED) of different methods on these data sets. There are
different number of sample sizes for different data sets. Thus
we randomly select 3, 3, 10, 10, 15, 100, 100 and 100 instances
with label information per class from Umist, Coil20, USPS,
PIE, KSA, MNIST, Epsilon and CovType and 40% unlabeled
samples as the training data, and the remained samples are
used for testing. All the tests were repeated 50 times, and
we then calculate the average classification accuracy and re-
dundancy rate (RED). Moreover, to analyze the performance
of ISR, we compare our method with other approaches
by Students t-test in the experiments. Since different data
sets have different dimensions of features, we select various
number of features according to the ranked feature indexes
{r1,r2, -+ ,rs}. Similar to [3], other parameters are deter-
mined by cross validation if necessary.

For classification task, each feature selection algorithm is
first performed on training data to select optimal features.
Then we use SVM to classify the testing samples that repre-
sented by the selected features. The mean classification accu-
racy results and the results of ¢-test are shown in Fig. 2. From
another point view, we adopt the redundancy rate (RED) to
comprehensively evaluate the performance of feature selec-
tion methods. Fig. 3 represents the corresponding average

redundancy rate (RED) when different numbers of features
are selected by different feature selection algorithms. Due to
the limitation of space, we only report the results on four
representative data sets.

As seen from the results in Fig. 2, the classification
accuracies of different methods vary with the increase of
the number of selected features. For all data sets except
Umist and Coil20, all feature selection approaches achieve
higher classification accuracy with more selected features.
A similar tendency can be found on Coil20, with only ISR’s
performance fluctuating. For Umist data set, the accuracy
achieved by each method fluctuates within a certain range.
With more features, the data can be characterized better
and gradually close to the accuracy of baseline method.
Meanwhile, the experimental results of t-test are listed in
Fig. 2 with a threshold of 0.05 statistical significance. From
the statistical view, all of these results indicated that ISR
achieves significantly better results comparing to the other
algorithms in most cases.

Generally, in most of cases, ISR outperforms all the other
feature selection methods on all data sets for classification
accuracy. Especially, on the Epsilon data set, ISR achieves
8.07% to 10.25% improvement compared to the best result
of all the other methods. Fig. 3 presents that the feature
subsets selected by ISR on all four data sets consistently
have lower redundancy rate than other methods. Besides,
in most cases, redundancy rate of selected feature subset
decreases as the number of selected features increases. In
terms of the RED results, our method consistently performs
better than all the other approaches and baseline. The results
also show that our ISR outperforms other methods in most
cases, even when we take all the features as the input.

In summary, our method can enhance feature selection
performance for classification via insensitive sparse regres-
sion model. There are two main reasons for this. First, ISR
adopts label propagation to enlarge label information of the
training data. Second, we use the learning mechanism by
adding sparse constraints and capped l2-l,-norm loss for
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feature selection. Thus ISR tends to be more robust to false
labeled instances and select lower redundancy rate features.

5.4 Computational Time Comparison

In this section, we provide some experimental results to
compare the computational time. To show the influence
of data size n and dimensionality d, we select two data
sets, i.e.,, Coil20 and CovTIype, since they have the largest
n and d among eight data sets. With a naive MATLAB
implementation, we report the computational time of ISR
and other feature selection methods. We have tested all the
algorithms on a laptop with 8 processors (2.27 GHz for each)
and 32 GB RAM memory. The results are shown in Table 4.

The experimental results of Table 4 indicate that LapScor
costs the least time in all the cases, InfFS and S*FS?R costs
the most time in most of cases. The computational costs
of our ISR change with different number of instances and
different dimension of features.

5.5 Parameter Determination

We provide some results of ISR with different parameters in
this section. There are two groups of parameters be deter-
mined in our method. One group is p and g, which control
the model complexity of ISR. Similar with the settings of
[43], [49], we choose p = ¢ = 1 in our following experiments.
Besides, the experimental results, e.g. Fig. 2, Fig. 3, Fig.
6-Fig. 11, also indicate that ISR under this setting obtains
relatively good performance.

Another group is «, € and 7. « is a step size of
gradient, which is computed by the traditional line
search method [45] automatically. ¢ is the threshold
parameter and ~y controls the trade-off between the sparse
regression and sparsity. Since parameter determination
is still an open problem, we determine the parameters,
ie, € and v, in a heuristic way. More concretely, we
determine two parameters by grid search, i.e. € varies from
{1075,107%,1073,1072,107*,10°, 10*, 10%,10%, 10, 10°}
and ~ varies from {10_4, 1073, 1072, 1071, 10°, 10%, 103,

Fig. 4. ACC of SVM on COIL20 and USPS with different e and ~. € varies
from {10—5,107%,10~3,10—2,10~%,10°,10%, 102, 103, 10%,10°} and
~ varies from {104, 10—3, 10—2, 10~1, 10°, 10, 102, 102, 10*}. The
z-axis and y-axis represent e and v in log scale, respectively. The z-axis
is the accuracy results.

102, 10*}. The ACC results of SVM with different ¢ and ~y
on COIL20 and USPS data sets are shown in Fig. 4.

As seen from Fig. 4, parameter determination takes
influence on the performance of ISR. Different combinations
of parameters may result in different selection of features.
Then, the ACC results of SVM change.

6 APPLICATION TO VIDEO SEMANTIC RECOGNI-
TION

Video semantic recognition (VSR) is a fundamental task and
still a challenging problem of machine learning and pattern
recognition. The difficulties of VSR lie in high complexity of
visual patterns and high dimensionality of visual features.
In this section, we apply our ISR into sports and consumer
action recognition on four benchmark video data sets.

6.1 Video Data Sets

There are totally four public video data sets, Columbia Con-
sumer Video (CCV) ?, Kodak consumer video (Kodak) 1°,
Olympic sports action videos (Olympic)'! and UCF sports
action videos (UCF)!?. In the following, we will briefly
introduce the detailed description of four data sets.

(1) CCV: CCV contains 9317 web videos over 20 semantic
categories, including events like baseball and parade and
scenes like beach. It was collected with extra care to ensure
relevance to consumer interest and originality of video
content without post-editing. Consumer videos contain very
diverse content and have much fewer textual tags and
descriptions, which motivates the content analysis based
on both acoustic and visual features. Similar with [9], we
extract three types of features for each video by BoWs
representation: (1) 5000-D space-time interest points (STIP)
feature [50], (2) 5000-D scale-invariant feature transform
(SIFT) feature and (3) 4000-D Mel-frequency cepstral coef-
ficients (MFCC) feature.

(2) Kodak: Kodak extracts 5166 key frames from 1358
consumer video clips as its data sets. Among these key
frames, 3590 key frames belonging to 22 concepts are an-
notated by students from Columbia University. We use all
annotated key frames in our experiments for video concept
detection. Each key frame is represented by 73-D edged

9. http:/ /www-nlpir.nist.gov/projects/tv2005/

10. http:/ /www.ee.columbia.edu/In/dvmm /consumervideo/
11. http:/ /vision.standford.edu/Datasets /OlympicSports/

12. http:/ /crev.ucf.edu/data/UCF_Sports_Action.php
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TABLE 4
Computational time (CPU time in second) of different methods on COIL20 and CovType data sets.
Data FisherScor | RFS | MCFS | TRCFS | S?FS?R | InfFS | ECFS ISR
COIL20 0.03 0.03 148 0.35 6.75 40.67 4.93 3.03
CovType 6203 11258 | 15724 87507 175731 212369 | 65420 | 54085
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EDH g. apped /2-Ip Loss and |1 . ‘e . . .
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Fig. 5. The illustration of the general process for video semantic recogni-
tion by ISR. The red frame presents the core part of our algorithm which
analyzes the feature space for practical applications.

direction histogram, 48-D Gabor and 225-D grid color mo-
ment, which are combined to be a 346-D vector of global
features to represent each key frame.

(3) Olympic: Currently, Olympic contains 783 video se-
quences of athletes practicing different sports at a resolution
of 640x480. All video sequences are obtained from YouTube
and annotated by Amazon Mechanical Turk. It contains 16
types of sports actions, e.g. high jump, long jump, triple
jump, bowling, tennis serve, platform diving, discus throw,
and gymnastic vault. We extract 7830 key frames from
all video sequences. Similar with [9], each key frame is
represented by a 8500-D spatial pyramid BoWs feature.

(4) UCF: It consists of about 200 video sequences at a res-
olution of 720x480 collected from various sports which are
typically featured on broadcast television channels such as
the BBC and ESPN. The collection represents a natural pool
of actions featured in a wide range of scenes and viewpoints.
UCF includes 12 actions categories, like diving side, golf
swinging back, kicking, lifting, running, skating, swinging
bench and walking. It is very challenging for recognizing re-
alistic actions from videos, due to large variations in camera
motion, cluttered background and illumination conditions.
We extract 7675 key frames from 200 video clips as UCF
data sets. Similar with [9], each key frame is represented by
a 10880-D spatial pyramid BoWs feature.

6.2 Framework and Evaluation Metric

To apply our method into video semantic recognition, we
first give the main procedure in processing videos. As
shown in Fig. 5, the main steps of ISR for VSR are (1) to
represent the videos by different types of visual features,
like SIFT and Bag of Words (BoW); (2) to enhance the label
information of the training videos by manifold fitting on the
data structure; (3) to learn the sparse coefficients W by ISR
via sparse robust regression model and (4) to select more
discriminative feature subset to recognize the semantic class
of each testing video by obtained optimal feature subset.
Similar to [10], [20], [51], we adopt two metrics: Mean
Average Precision (MAP) [10], [20] and Area Under Curve

recognition, especially for the BoW histogram representa-
tions. Therefore, we utilize linear SVM as the classifier. The
sampling processes were repeated fifty times to generate
50 random training/testing partitions, and then the average
performance of fifty-round repetitions is reported.

6.3 Video Semantic Recognition Results
6.3.1 Performance of Semi-supervised Feature Selection

To investigate the performance of semi-supervised feature
selection deeply, we set the ratio of labeled training videos in
the sampled training videos to 1% on CCV, Kodak, Olympic
and UCFE. And we set the number of selected features to
different values of {10, 30, 50, 70, 90, 110, 130, 150, 170, 190,
210, 230, 250} on CCV and Kodak, {10, 50, 100, 150, 170, 190,
210, 230, 250, 270, 290, 310, 330, 350} on Olympic and UCF.
Once the index {ri,r2,---,rs} of the selected features is
obtained, we train a classifier based on the selected features
of the training videos.

Fig. 6, Fig. 7 and Fig. 8 present the performance (MAP,
MicroFy and AUC) of video semantic recognition of dif-
ferent feature selection methods. We observe that 1) When
the number of selected features increases, ISR has a better
performance in most cases; 2) Compared with the unsu-
pervised and supervised feature selection methods, ISR has
competitive or better performance than that of Laplacian
score, Fisher score, RFS, MCFS, InfFS and ECFS, by the
preservation of local geometry structure of unlabeled videos
via graph Laplacian and enhancing the label information via
label propagation; 3) Compared with the semi-supervised
methods, TRCFS and S?FS°R, ISR outperforms other algo-
rithms. Especially when the number of selected features is
very small, ISR outperforms all the compared methods.

Interestingly, although MAP, MicroFy and AUC show
the same trends in most cases, there maybe some slight
differences between them. For example, on Olympic data
with s = 50, S?’FS’R has the larger MAP and MicroF;
than RFS while RFS achieves the larger AUC value than
S?FS®R. This may be caused by the fact that they evaluate
the performances of action recognition in different aspects.
Comprehensively considering the results of MAP, MicroFy
and AUC on four video data sets, the performance of ISR is
the best in most of cases.
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Fig. 9. The MAP scores of ISR and the state-of-the-art methods with different ratios of labeled samples on four video data sets.

0.5

I LapScor I LepScor .5 | I LapScor

I TRCFS 04

Bl srsR -
0.3
0.2
0.1

0 0
1 5 10 20 30 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30
Ratio of Labeled Samples (%) Ratio of Labeled Samples (%) Ratio of Labeled Samples (%) Ratio of Labeled Samples (%)
(a) CCV (b) Kodak (c) Olympic (d) UCF

Fig. 10. The MicroF; scores of ISR and the state-of-the-art methods with different ratios of labeled samples on four video data sets.
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Fig. 11. The AUC scores of ISR and the state-of-the-art methods with different ratios of labeled samples on four video data sets.
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6.3.2 Performance of Different Ratios of Labeled Videos

In this section, we investigate the performance of ISR com-
pared with the state-of-the-art methods for video seman-
tic recognition. To show the impacts of different ratios of
labeled training videos for semi-supervised methods, we
report results when the ratios of labeled training videos are
set to 1% , 5%, 10%, 20% and 30%. And we fixed the number
of selected features to {10, 50, 100, 150, 170, 190, 210, 230,
250, 270, 290, 310, 330, 350}. We evaluate the performance of
feature selection algorithms in video semantic recognition
applications by computing the average MAP, MicroF; and
AUC values of video semantic recognition when the range
of the number of selected features changes between 10 and
350. Fig. 9, Fig. 10 and Fig. 11 present the results of MAP,
MicroF1 and AUC values with different ratios of labeled
videos in training set using linear SVM classifier.

From the results of Fig. 9, Fig. 10 and Fig. 11, we observe
that: 1) the proposed framework of ISR outperforms the
state-of-the-art methods for different settings of the ratio of
labeled training videos; 2) As the number of labeled training
samples increases, the performance of feature selection in-
creases. When the number of labeled videos is very few, for
example, 1% on CCV and UCF, ISR has better performance
than other compared methods. On CCV, MAP, MicroFi
and AUC of ISR are at least 4.2%, 3.7% and 1.9% higher
than that of others. 3) Similar to the results in Section 6.3.1,
the evaluation criterions, MAP, MicroF; and AUC, show
the same trend. 4) In general, the performance of semi-
supervised feature selection methods are better than that
of supervised and unsupervised algorithms.

7 CONCLUSION

In this paper, to select the most discriminative features, we
propose a new semi-supervised feature selection method
named ISR, by using a few labeled instances. After enlarging
the label information of training data, we design capped
lo-lp-norm loss to make ISR robust to the false labeled
samples or outliers. To select the most important features
by ranking scores, l2,4-norm regularization is imposed into
ISR to preserve the structural sparsity. Various experiments
verify the effectiveness of our ISR. Finally, we have also
applied ISR to video semantic recognition.

One of our future work is to find a more effective way to
solve our non-convex formulation. There are many methods
to tackle the non-convex optimization problem, such as
linear local approximation and block gradient decent. More-
over, the converged speed of different methods is various.
As videos include various features, another future work is to
further investigate the heterogeneity among these features.
We also want to apply ISR to other video applications, e.g.
action recognition and video retrieval.
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