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2D Feature Selection by Sparse Matrix Regression
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Abstract—For many image processing and computer vision
problems, data points are in matrix form. Traditional methods
often convert a matrix into a vector and then use vector-based
approaches. They will ignore the location of matrix elements and
the converted vector often has high dimensionality. How to select
features for 2D matrix data directly is still an uninvestigated
important issue. In this paper, we propose an algorithm named
sparse matrix regression (SMR) for direct feature selection on
matrix data. It employs the matrix regression model to accept
matrix as input and bridges each matrix to its label. Based
on the intrinsic property of regression coefficients, we design
some sparse constraints on the coefficients to perform feature
selection. An effective optimization method with provable con-
vergence behavior is also proposed. We reveal that the number
of regression vectors can be regarded as a tradeoff parameter to
balance the capacity of learning and generalization in essence.
To examine the effectiveness of SMR, we have compared it with
several vector-based approaches on some benchmark data sets.
Furthermore, we have also evaluated SMR in the application
of scene classification. They all validate the effectiveness of our
method.

Index Terms— Two dimensional data, feature selection, sparse
matrix regression, scene classification.

I. INTRODUCTION

ATRIX data, or more commonly, tensor data, has

emerged in many real applications, especially in the
fields of image processing and video analysis. For example,
in Scene Classification (SC) [1], there are many images col-
lected from different scenes. The raw pixel-wise representation
of each image is a matrix. Thus, the natural representation of
each data set is a set of matrices.

Although matrix data arises in many fields, the origi-
nal matrices are always scanned into vectors in traditional
researches, since most of traditional approaches are vector-
based [2]. It has been acknowledged that this kind of vector-
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Fig. 1.

Sample images from the ORL data set with noisy occlusion.

ization will cause some problems. The vector representation
of original matrix often has high dimensionality. For example,
when the sample images have a little higher resolution, e.g.,
128 x 128, the dimensionality of this reshaped raw pixel-
wise vector is 16384. In this scenario, the performances of
traditional vector-based methods will degrade [3]-[5]. One
reason may be that traditional vector based methods often
suffer from small sample size problem [2].

To handle the high dimensionality problem, dimensionality
reduction approaches have been widely investigated in recent
years [6]. It aims to reduce the dimensionality of the high
dimensional data by finding a set of relevant features. It for-
mulates a smaller set of representative features and retains
the optimal salient characteristics. Preprocessing data in this
way not only decreases the processing time but also leads
to more compactness and better generalization of the learned
models [7], [8]. Nevertheless, traditional dimensionality reduc-
tion approaches are often vector-based. Compared with the
matrix representation, vectorization will ignore the location
information of original matrix element [2], [9]-[12]. After
vectorization, each element is treated equally in the following
tasks. For example, as seen from image in Fig. 1, if we add
the block-wise noisy occlusion to the sample images from
the ORL data set,! we should treat this occlusion in a whole
part. This correlation will be lost when they are treated as
flatting vectors. Besides, the influence and effects of this noisy
occlusion for vector-based approaches, will depend on how we
vectorize the image. Thus, it is necessary to investigate the
problem of dimensionality reduction for matrix data directly.

Similar to vector based dimensionality reduction
approaches, there should be two distinct ways for matrix based
dimensionality reduction, i.e., feature extraction [6], [8] and
feature selection [7], [13], [14]. Feature extraction combines
several original features to form new representations. There are
a lot of prominent vector based feature extraction approaches,
such as Principal Components Analysis (PCA) [3] and
Linear Discriminant Analysis (LDA) [3]. Correspondingly,
a lot of efforts have also been devoted to extending these
vector-based approaches to manipulate matrix data directly.
For example, 2DPCA [15], [16] and (2D)2PCA [17] are the
matrix counterparts of PCA, 2DLDA [11] and (2D)2LDA [18]

1 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Fig. 2. The intuition of SMR.

are the matrix counterparts of LDA. Besides, many feature
extraction algorithms [19]-[23] based on the tensor subspace
method have also been developed for data representation,
pattern classification and network abnormal detection [24].
For more details, please refer to [25] for a comprehensive
review.

Different from feature extraction, feature selection focuses
on selecting a few relevant features to represent the original
data. It does not change the original representations and main-
tains the physical meaning of data variables. Consequently,
many efforts have been devoted to addressing the problem of
feature selection during the past few years [7], [13], [14], [26].

There are plenty of vector-based supervised feature selection
algorithms in the literature. We would like to introduce some
representative approaches briefly and see more details in
Section II. Fisher Score [3] is a widely applied filter-type
feature selection algorithm that is based on LDA. T-test [7]
is a statistical algorithm used to determine if the distributions
of values of a feature for two different classes are distinct.
Information Gain (IG) [27] is another popular feature selec-
tion approach based on information theory. Another infor-
mation based method named Maximum Relevance Minimum
Redundancy (MRMR) [28] focuses on relevance-redundancy
analysis. Besides, ReliefF is another well-known feature
weighting algorithm proposed by Kira and Rendell [29].
Recently, Nie et al. [30] proposed a Robust Feature Selection
algorithm, named as RFS, by incorporating sparse constraint in
robust linear regression. Liu ef al. [13] have proposed a global
and local structure preservation feature selection method, name
as GLSPFS. Tao er al. [26] have enabled traditional feature
extraction approach, i.e., LDA, conducting feature selection
by adding sparse constraint. For a comprehensive review
of supervised feature selection, please refer to the toolbox
Weka [31] and Scikit-Feature [32] for more details.

Although a lot of promising algorithms are proposed for
feature selection, they are all vector based. As what we have
mentioned before, they often ignore the location informa-
tion, e.g., the block-wise occlusion structure. Each matrix
is reshaped as a vector and feature selection algorithm is
then employed. It will undoubtedly suffer from the above
mentioned problem.

In this paper, we propose a contribution to solve the
problem of direct matrix data feature selection by introducing a
novel supervised and embedding based feature selection algo-
rithm: Sparse Matrix Regression (SMR). As shown in Fig. 2,
to use location information by treating each element unequally,
we propose to use matrix regression framework to connect the
matrix and its label. For feature selection, by revealing the
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intrinsic property of matrix regression coefficients, we plan to
add some sparse constraints on them to perform feature selec-
tion. We provide an effective method to solve the proposed
problem with sparse constraints, together with the convergence
behavior analysis. Compared with traditional vector-based fea-
ture selection approaches, our method has been demonstrated
to have better performances on some benchmark data sets.
Compared with representative feature extraction approaches,
our method can maintain the physical meaning of data vari-
ables and achieves comparable or even better performance.
Further, we have also evaluated our method on a real scenario,
i.e., scene classification. They all validate the effectiveness of
SMR. Besides, our algorithm takes matrix data as a demon-
stration. It can be extended for manipulating any kinds of high
order tensor data directly.

The rest of this paper is organized as follows. Section II
briefly describes some related works. We formulate the SMR
algorithm and provide the corresponding optimization pro-
cedure in Section III. The performance analysis, including
convergence behaviour and parameter determination, are pre-
sented in Section IV. Section V provides some promising
comparative results on various kinds of data sets. We eval-
uate our algorithm on a real task, i.e., scene classification,
in Section VI, followed by the conclusions and future works
in Section VII.

II. RELATED WORK

In this section, we will briefly review several representative
vector-based feature selection approaches. First, let us intro-
duce several notations.

A. Notations

In this paper, matrices and vectors are written in boldface.
For a matrix M = (m;;), its i-th row and j-th column are
denoted as m’ and m ; respectively. Denote {X; € R™*"|i =
1,2,---,1} as the set of training examples and the associated
class label vectors are {yi,y2,---,Yy:;} C R Here, y; =
[vit, yi2, - -~ ,y,-C]T. yij = 1 if and only if X; belongs to
the j-th category and y;; = O otherwise. ¢ is the number
of classes. m and n are the first and second dimensions of
each matrix data. [ is the number of training points. Define
e=[1,1,---,1] € R"™ as arow vector of all ones and o > 0
as a balance parameter. Define Vec(-) as an operator which can
convert a matrix to a vector by collecting the columns. Denote
{x; = Vec(X;)|i = 1,2,---,1} as the vector counterparts of
the training examples.

Denote the ¢, ,-norm of a matrix M € R"*" as [30]

1
n
> Imi| :
j=1

When r > 1 and p > 1, £, p-norm is a valid norm as it
satisfies the three norm conditions.

S

m

rnp = Z

i=1

M

r>0,p>0. (1)

B. Representative Supervised Feature Selection Approaches

In the following parts, we will introduce three representative
supervised feature selection approaches, i.e., Fisher Score,
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MRMR and Robust Feature Selection, which only accept
vectors as the input .

1) Fisher Score (FisherScor) [3] is derived from one of the
well-known feature extraction algorithms, i.e., LDA. It tries to
search a subset of features, such that in the data space spanned
by the selected features, the distances between data points in
different classes are as large as possible, while the distances
between data points in the same class are as small as possible.
Concretely, the objective function of Fisher Score is

L="TrSy (S, +yD7H, ()

where y is a positive regularization parameter. S, is called
between-class scatter matrix and S; is called total scatter
matrix. They are calculated based on z, the low dimensional
representation of X, using the same formula as in tradi-
tional LDA. It is a relevance-only criterion and it does not
apply any redundancy analysis on the existing features.

2) Maximum Relevance Minimum Redundancy (MRMR)
[28] is a popular relevance-redundancy approach. It selects
features that are distant in terms of mutual information and
have high correlation to the classification variable according
to the minimal-redundancy-maximal-relevance criterion based
on mutual information.

3) Robust Feature Selection (RFS) [30] is a novel vector-
based feature selection approach. It emphasizes sparse con-
straints on both loss function and regularization. The proposed
method is robust to outliers in data points and the sparse reg-
ularization selects features across all data points. Concretely,
the objective function of RFS is

!
LW, D) =D WX +b—yilr +alWlai. ()
i=1

After deriving the optimal solution, RFS uses the 2-norm
of the row vectors of W to measure the importance of each
feature and to select the most important features. Although
RFS achieves prominent performances in many applications,

it only accepts vectors as its input.

C. Representative Regression Method for Matrix Data

General Bilinear Regression (GBR) [33] is a regression
model which takes matrix data as the input. It is the
two-dimensional counterpart of traditional vector based regres-
sion method. It replaces the regression function of traditional
model by a bilinear regression function. More concretely, in a
two-class scenario, we assume that the left and right projection
vectors are u and v. Its objective function is

L@u,v,b) =" a"Xpv + b — ;2.

GBR has only been analysed mathematically. Besides,
it only uses one left projecting vector together with one right
projecting vector. Its fitting error is too large for some real
regression problems.

III. SPARSE MATRIX REGRESSION

Assume that we have been given [/ training examples,
denoted as {X; € R™*"|i =1,2,---,1}. The associated class
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label vectors are {y,y2,---,Yy;} C R°. We want to use the
label information in selecting important features from these
matrix data directly.

A. Formulation

Considering that the input of our algorithm is matrix and the
label information is also available, we try to use both of them
by employing regression model since the regression methods
perform well for the task of classifier training.

The objective function of SMR is composed of two parts.
Generally, the first one measures the loss with matrix regres-
sion and the other is the sparse constraint designed for
feature selection. Before going into the details, we reformulate
the objective function of traditional regularized least square
regression method as follows,

1
LW, b) =D [Wx; +b—yill} +a|WI}

i=1

I ¢ c
= z Z (szi + by — yir)2 +a Z(war)
r=1

i=1 r=1
c l
= Z(Z WExi + by — yir)® + a(w! wr)), @
r=1 \i=lI
where W = [w|,Wwp, -+, W] € R™X and b =
(b1, by, -+ ,b.]T are the projection matrix and constant bias

respectively, x; = vec(X;) is the vectorization of X;.

As it can be seen from the above deduction, we can separate
the original regularized least regression model into ¢ sub-
problems. In other words, the formulation in (4) can be
regarded as training c classifiers for ¢ categories separately.
Thus, in the following, we only consider to train a classifier
for the r-th category.

When the inputs are changed to matrices, one direct way
for extending the loss function of traditional regression model
shown in (4) is to replace the traditional projection term,
ie., er x; in (4), by its tensor counterpart, i.e., urTXivr, where
u, and v, are the left and right transformation vectors for the
r-th category. This is called General Bilinear Regression in
the literature [33]. Nevertheless, this kind of replacement will
induce some strong constraints since

urTX,-V, = Tr(urTX,-V,) = Tr(X,-vrurT)
= Tr((u,v))TX;) = Vec(u, v/ Vec(X;). (5)

Comparing (4) with the GBR formulation, we know that the
vector counterpart of w, is Vec(urvrT ). In other words, the mn
values in a tensor base urV,T of GBR only have m +n degrees
of free variables. In many real cases, these added constraints
are too strict. It can not characterize the original data fully and
thus, increases the regression error.

To solve this problem, we discuss it from the view of
learning theory at first. The GBR model has large training
errors and thus, its learning capacity is poor. One direct way
for enhancing the learning capacity is increasing the model
complexity. In other words, we want to increase the number of
free variables and relax these too strict constraints. Instead of
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using merely one couple of projecting vectors, i.e., the left
projecting vector w, and right projecting vector v, for the
r-th classifier, we propose to use k couples of left project-
ing vectors and right projecting vectors as in our previous
work [34]. They are denoted as {uﬁ.r) }’;: , and {vﬁ.r) }’;: - Here,
k is the number of regression vectors and it is the parameter
to balance the capacity of learning and generalization for
the regression model in (6). Intuitively, when k is large,
we have more independent optimization variables. It means
that the model has small training error and strong learning
capacity. Nevertheless, the model trends to be over-fitting and
its generalization capacity is weak. We will reveal the essence
of k in Proposition 2. See more details in Section IV (B).
Besides, we can also discuss it from the view of ensemble
learning. We use k couples of regression vectors and join
them in formulating the regression item. Essentially, it can be
regarded as using an ensemble strategy to reduce the variance
of classifier predictions on different types of data sets [35].
In particular, the loss function for the r-th classifier is

2

k
Z (llﬁ-r))TXng-r) +br —yir |
=1

1

2

i=1

(6)

where b, is the unknown bias for the r-th category.

Denote U") = [ugr),ug), e ,u,((r)] e Rk and V) =

[Vgr),Vg), e ,v,Er)] € R"™*k the loss function in (6) can be
reformulated as

! 2

> (U X V) + b, — yiy)

i=1

@)

The second objective function is designed for feature selec-
tion. Inspired by the basic idea of sparse regression for feature
selection in [30], we also want to add sparse constraints on the
transformation matrix to measure their values in regression.
Unfortunately, in matrix regression, we have two groups of
regression vectors and their relationships are close. It is unwise
to add sparse constraints on them separately. In the following,
we will design a new sparse constraint on their combinations.

Note that, for the r-th classifier, we have

k k
> @)XV =3 Tr(@ ) Xiv()
j=1 j=1

k k
= > Xy @) = X Qv i)
j=1 j=1
= Tr X VO U)T) = Tr(U (V) )HTX)

= (Vec(U (V) T) T Vec(X;). 8)

Similar to the observations from (5), in matrix regres-
sion model, the tensor counterpart of w, in (4) is
Vec(UM(VHT) Denote p, = Vec(UPD(VHT) and P =
[P1, P2, - ,Pc]. Then, the tensor counterpart of W in (4)
should be P € R™>*¢. It can be regarded as the linear
transformation matrix as in traditional regression model. The
r-th column vector p, corresponds to the classifier trained
by one versus rest strategy. In other aspect, we can also
regard P as the transformation matrix which can also perform
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dimensionality reduction. The i-th row vector, denoted by p;,
corresponds to the transformation vector of the i-th feature
in regression for i = 1,2,--- ,mn. It can be regarded as a
vector that measures the importance of the i-th feature. For
convenience, let

T

Since our task is feature selection, we expect that the
transformation matrix P holds some structure sparsity property.
Concretely, we expect that most p; are zeros. In detail, the cor-
responding features can be neglected since these features are
redundant for regression. When we use the 2-norm of p; as a
metric to measure its contribution in regression, the sparsity
property, i.e., a small number of P, entries are non-zero,
indicates the following objective function,

p/2

. 2
> |pijl =Pl .

j=1

mn mn

argmin > (Ipi )" = >

i=1 i=1

(10)

with 0 < p < 1 for the sake of feature selection. It is a sparse
constraint and requires that a small number of p; are non-
zeros vectors. The non-zero p; corresponds to the important
features since the p; with all zero elements can be neglected
in the former regression.

By combining the objective functions in (7), (10) and
joining all categories, the Sparse Matrix Regression (SMR)
algorithm for feature selection can be summarized as follows.

E(U(l), DY U(C)a V(l)’ T, V(C)’ b)

c 1
2
=>> (Tr((U(’))TXiV(r)) + by — )’ir) +alPll},

r=1 i=lI
with P = [p1,p2, -+, Pel, pr = Vec(UP (V)T
(11)

where o is a non-negative balance parameter. It can be
determined by traditional parameter determination approaches,
such as cross validation. In our experimental results, we pre-
define a parameter set and search the best o from this set. See
more details in the end of Section V(A).

Comparing the SMR formulation in (11) with the traditional
regression model in (4), we would like to explain why SMR
could use location information of matrix data. Intuitively, each
row (or column) vector is treated equally in (7). The block-
wise occlusion in the images shown in Fig. 1 is treated as a
whole part. Besides, as seen from (8), if we use traditional
regression model as in (4), it is obvious that all elements in
Vec(X;) are treated equally. In SMR, however, the counterpart
of traditional regression coefficient is Vec(U") (V)T and
different elements of Vec(X;) correspond to a different regres-
sion coefficient constraint. In other words, if we permutate the
elements of the original matrix in different ways, the outputs
will be different. Thus, SMR could use location information
to some extent.

After deriving the optimal solution, we use the 2-norm of
Pi, i.e., |IPill2, to evaluate the importance of each feature.
Each feature corresponds to an element of the matrix. Thus,
the larger this value is, the more important this element is.
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In real-world applications, we can either select a fixed number
of the most important elements or set a threshold and select
the element whose importance is larger than this value. In the
following, we select a fixed number, i.e., s, features for
evaluation.

B. Solution

As seen from the optimization problem in (11), it is difficult
to solve this problem directly since 1) both of the terms are
non-smooth; 2) the sparse constraints are added to P, whose
elements are the complex combinations of U and V) for
r=1,2,---,c.Besides, two groups of optimization variables,
ie., {U(’)}ﬁ:1 and {V(’)}f: are coupled with each other in
two ways. First, U™ and V) are matrix regression matrices,
and they are coupled in the loss function. Second, all the U
and V) are coupled together in formulating the regularizer P.
Thus, it is difficult to solve them simultaneously and we
propose to optimize them alternatively. Our theoretical results
show that this kind of iteration will converge.

1) Fix {VOY_, and Optimize {UVY_, and {b,}_,:
When all V) are fixed, we need to optimize a set of
U and each U") contains multiple regression vectors. The
optimization problem seems complicated. Nevertheless, after
some deductions, we can reformulate the problem in (11) and
derive its solution effectively.

Recalling the basic idea to solve the sparse constraints
problem as in [30], we take the derivative of ||P||§’ » with
respect to P. For convenience, we denote L(P) = ||P||§, o
When p; # 0 for i = 1,2, ,mn, the derivative of L(P)
with respect to P is

oL(P)
oP

where D®) e R™™" is a diagonal matrix with the i-th
diagonal element as

=2D®p, (12)

P A P2
ai’ =2 |bifl (13)
Here p; is the i-th row of P as defined in (9).
When D®) is fixed, the derivative of £ in (11) can also be
regarded as the derivative of the following objective function.

E(U(l)’ ) U(C)a V(l)’ DY V(C)’ b)

c 1
2
-3y (Tr((U(’))TXiV(’)) Y by — yir) + aTr(PTD®P)
r=1 i=1

with P = [p1, p2, -~ , pel, pr = Vec(UD(V)T). (14)

In the following, we use the objective function in (14) to
approximate the SMR formulation in (11). By solving this
problem with our method, we will prove that the objective
function of SMR will also decrease. Moreover, with this
approximation, we can solve the problem in (14) effectively.

Before going into the details for solving the problem in (14),
we decompose it into ¢ separate sub-problems. After some
deductions, the following equation holds,

c
Tr(P"D®'P) = > p/D"p,. (15)

r=1
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Thus, when D® is fixed, we can decompose the objective
function in (14) into the following ¢ independent sub-problems

argmin LU, V), b,)
2
= > (T (@)X V) + b, — yi,) + aplDp,.

i=1

(16)
Denote
X,-VY) ugr)
(r) (r)
X;v u
) _ D) NOIE 2
(= i = | (7
o0 %)
X’Vk mkx 1 uy mkx 1
Then, the loss function in (16) is equivalent to
A (T (1) 2
> (@TE + b, = yir) (18)

i=1
Note that 6 = Vec(U(r)), then p, can be reformulated
with respect to @) as follows.
pr = Vec(UO (V)T = Vec@u® (v)T)

= (VO @DVec(UM) = (VO @ Da”,  (19)

where ® denotes the Kronecker product and I represents the
identity matrix.
The regularization term in (16) can be reformulated as

p/Dp, = @) (VO o DDV (VY @ D

= (ﬁ(r))TA(r)ﬁ(r)’ (20)
where A®) = (V) @ DTDO (V) @ 1).
Denote
F(r) = [fl(r)a fz(r), ) fl(r)]mkxl,
y(r) = [YIr,YZra"' 9ylr]1Xl‘ (21)

Then, (16) becomes
argmin L@, b,)
= (@")TF" + bre —y)(@")TF + bre —y)T
+a @)TAMG", (22)
where e is a vector whose elements are all 1.
It is a regularized least squares problem. Take the derivative

of L@, b,) with respect to &), b, and set it to zero. The
optimal solutions for (16) are

a® = [F(F)Lc (F(r))T +aA(r)]—l FOL, (F(r))T’

1
— (r) GNTF" ) oT
b, = 7 (y @"”)'F )e ,

where L, =1 — %e

(23)

Te.

In words, when {Vi(r)}f.‘:1 is fixed, we have approximated the
optimization problem in (11) as the problem in (14), which can
be solved in an alternative way. Concretely, we alternatively
update D® using (13) and update @), b, using (23). The
solutions calculated by (23) are also the global optimization
to (14), provided that D® is fixed.
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2) Fix {UM)°_, and Optimize {VV)°_, and {b}_,:
As seen from the formulation of SMR in (11), we also want
to reformulate it as a regularized least squares problem as
shown in (22). Nevertheless, the vector p, in (19) can only be
formulated by Vec((V")T), not Vec(V?)), as follows.

pr = VeC(U(r)(V(r))T) — VeC(U(r)(V(r))TI)

= I ® UM)Vec((VINT). (24)

Since p, can not be formulated by Vec(V()), the above
deduction can not be implemented when U is fixed. To solve
this problem, we go back to the original formulation of SMR
in (11). In the formulation of p,, U") and V® are not
changeable. This is the main reason for our difficulty in solving
SMR as previous. Fortunately, after some deductions, we have
the following equations, which can facilitate our solution.

IPIS, = IQI5,

P = [pl,pZ,"‘ ,pc],

pr = Vec(UO (V)T

Q=1[q1,92, - ,qc],

g = Vec(VO (UM)T). (25)
Tr(U)YX; VD) = Tr((vO)'XTu™). (26)

(25) holds since (UM VT = vO@WMYT and
Vec(U (VYT Vec(VO) (U are different permutations
of the same elements (all the elements of U (V" NT are
the same as those of V) (U NT). Since the elements in
each column of P are permutated in the same order as in
formulating Q, the rows of Q are just different arrangements
of the rows of P. Besides, the order of rows for a matrix does
not change its {2 p-norm. (26) holds since Tr(C) = Tr(CT)
for any square matrix C.

Considering the results in (25) and (26), we can reformulate
the objective function of SMR in (11) as

E(U(l)’ ) U(C)a V(l)’ DY V(C)’ b)

c 1
2
= >3 (T VO XIUO) 4 b i) QI
r=1 i=1
with Q = [q1, @2, - - , qc], @ = Vec(V(U)T).

27)

Comparing (27) with (11), we now use the same strategies
to derive the optimal V") and b, when U®) is fixed. The
approximated problem can be derived in the same way as
previous. Concretely, the derivative of £ in (27) can also be
regarded as the derivative of the following objective function.

E(U(l), e U(C), V(l), . V(C), b)

c
2
=2 > (T (V) XTUD) + b, = yir)” +aTrQ'DWQ)
r=1i=1

with Q = [q1, q2, -+ , qc], g, = Vec(VO@WUM)T), (28)

where D®) e R™>™M" is a diagonal matrix with the i-th
diagonal element as

R 29)
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Here, q; is the i-th row of Q.
The optimization problem in (28) can also be separated into
¢ independent sub-problems as follows,

LU, VO p,)

2
= > (V) XIUD) + b, = 3ir) +aa! DV,

i=1

(30)
Denote
vl [y
T r r
g = X 0 | V2
i . > . 5
T ) )
Xi uy nkx1 Vi nkx1
G =1g",8", g k. 31)

We now reformulated the regularizer in (30) with respect
to ¥¢) = Vec(V?). Note that v) = Vec(V"), q, can be
expressed by () as follows.

g, = Vec(VO U)T) = Vec(@av W (UM)T)

= (U @ ) Vec(V?) = (UM @ )7, (32)
Then, the regularizer in (30) can be reformulated as
quD(u)qr — (Q,(r))T(U(r) ® I)TD(”) (U(r) ® I){,(’)

— ({,(r))TB(r){,(r), (33)

where B®) = (U® @ H'DW WM @ 1).
With these notations, (30) becomes
argmin L3, b,)
= (({,(r))TG(r) + bre — y(r))(({,(r))TG(r) +bre— y(r))T

+a FNHTBOM), (34)
The optimal solutions should be
o — [G’Lc G)T +aB(’)]_l GOL, (y)T,
by = % (y(” - (om)TG“)) e, (35)

where L, =1 — %eTe.

In conclusion, when we fix one parameter and optimize with
respect to the other, we can derive the solutions in a closed
form. Certainly, we can also try to optimize all the parameters
simultaneously. Nevertheless, since the optimization parame-
ters are coupled with each other, it is difficult to design the
corresponding strategy.

3) SMR Procedure and Highlights: There are several points
that should be highlighted here.

1) In the above deduction, although the computed vectors
are 1) and v\, not UM and V), they are just different
arrangements of the same vectors. We can reshape a(), v(")
into UM, V) and use them to formulate P and Q. Then,
we can use the 2-norm of the row vectors to rank the
features.

2) In the above procedures, when one group of vectors is
fixed, we need not to derive the optimal solutions. In each
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round, we only need to update them once. Specifically,
we update all the variables using (13), (23), (29) and (35)
in sequence and we need not to iterate (13) and (23) to derive
the optimal solution to the problem in (14). We will prove that
this iteration will also converge.

3) When computing D®), its diagonal element dl.(l.“ ) s
‘f)i’z could be very close to zero

2 Hg_z. In practice,
p’ ”2 can be zero theoretically. In this

but not zero. However,

case, di;)) = 0 is a sub-gradient of ||P||§ p Wt p’. We can not

set di(i“ ) — 0 when f)i = 0, otherwise the derived algorithm
will not be guaranteed to converge. Instead, we regularize
dl.(l.“) as di(;’) = S(@)'p’ +C)771. It is easy to see that
mn

> ()P + ()% approximates ||P||g,p when ¢ — 0. Simi-
i=1

larly, we can use the same strategy in computing D).

4) The fourth one is about initialization. As seen from
the above procedure, SMR is solved in an iterative way.
We would like to initialize V by the same way as in [11].
The initialization is [Tk, O x (,,,k)]T. As stated in [11], this
kind of initialization performs well. We initialize D®) = I
since each feature has the same importance at the beginning.
In the following experiments, we use this kind of initialization,
unless stated otherwise.

5) As seen from the formulation of SMR, the selected
features facilitate the process of matrix regression in essence.
It is not selected for the following classification tasks. Thus,
when we determine the features, we can also use these features
to compute the c-dimensional representation of each point.
These representations then can be used for the following
procedures, such as classification or clustering. In this case,
SMR can also be regarded as a feature extraction algorithm.
In the following evaluation, by employing different methods,
we use the selected original features as the representation for
a fair comparison.

6) In the above iterations, the stopping criterion is that the
difference of objective function values between two adjacent
iterations is small enough (107® in our experiments) or the
number of iterations is large enough (30 in our experiments).
As for the determination of s, it is difficult to determine
it without prior. We can specify it according to the real
requirement. In our experiments, we vary this parameter within
a certain range and show its influence.

The procedure of SMR is listed in Algorithm 1.

IV. PERFORMANCE ANALYSIS
A. Convergence Analysis

In previous section, we have solved SMR in an alternative
way. The following proposition guarantees that our solving
strategy can decrease the objective function of SMR shown
in (11) in each iteration.

Proposition 1: In each iteration, the objective function
value of SMR in (11) is non-increasing by employing the
optimization procedure in Algorithm 1.

There are three key points for its proof. 1) Solving the
approximated problem in (14) (or (28)) by the iterative strategy
listed in Algorithm 1, we can decrease the objective function
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Algorithm 1 SMR
Input: Data matrix X; for ¢ = 1,2,-[, labels
{y1,¥2, "+ ,¥y1}, balance parameter o > 0, rank parameter
ke {1,2,---}, sparse constraint parameter p € (0, 1].
Output: Selected feature index {r1,79, -+ ,7s}.
1: Initialize V = [Ix s, O (n—p)]” and D) =T;
Repeat
2: Update (™ and b, using (23);
3: Update D) using (29);
4: Update v(") and b, using (35);
5: Update D(*) using (13);
Until converge
Feature Selection
6: Compute P using (25);
7: Compute the scores for all features using the 2-norm of
the rows of P;
8: Sort these scores and select the largest s values. The
corresponding indexes form the selected feature index set
{r1,r2, - ,7s}. The corresponding elements of the input
matrices are the selected features.

of SMR in (11). 2) Using the strategies in Algorithm 1, we can
also see that the objective function in (14) is non-increasing,
since in each iteration, we have reformulated it as a regularized
least squares problem and the optimal solution can be derived
in a closed form. 3) The reformulated problem in (27) has the
same objective function values as that of the problem shown
in (11). Due to the space limitation, we omit the details.

Besides, we would also like to analyze the computational
complexity of SMR. In each iteration, we only need to solve
two linear regression problems taking mk and nk dimensional
data points as the inputs. A plenty of researches have been
dedicated to solving the linear regression problem and there
are many fast solving algorithms. For example, in [36] and
[37], an effective method, named as LSQR, has been proposed
for solving linear regression problem. Assume the linear
regression model is Ax = b with A € R™*"  the compu-
tational complexity of LSQR is O(t (2mn + 3m + 5n)), where
t is the number of iterations. As mentioned in [37], LSQR
converges very fast. Besides, as in the related literatures in
solving the {7 ,-norm regularization problem [30], the iter-
ation often has fast convergence speed. For example, in the
following experiments, SMR converges within 30 iterations.
Comparing with traditional vector-based methods which take
an mn-dimensional data as the input, our proposed SMR scales
well in practice.

B. Parameter Determination

There are three parameters in SMR, i.e., a, k, and p. p can
be determined as in previous work [26]. a is the parameter
which balances the effects of matrix regression and sparse
constraints for feature selection. k is the number of regression
vectors. The following proposition reveals the essence of k.

Proposition 2: Assume {uj,uy, --- ,u;} are any k vectors
of dimensionality m, {vVi,Vva,--- ,Vi} are k vectors of dimen-
sionality n. If k = min(m, n), then the dimensionality of space
spanned by Vec(Z;‘ w;v!) is mn.
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The proof of this result mainly includes two aspects.
On the one hand, for any mn-dimensional vector z, we can
find k couples of vectors, such that z = Vec(Zi-‘ u,-vl.T).
On the other hand, for any two groups of vectors, denoted as
{uj,up, -+ ,ug} and {vy, va, -+, Vi), Vec(zg‘ ll,‘Vl-T) € R™,
We omit the proof due to the limitation of space.

As seen from this proposition, k is a parameter to determine
the complexity of the model in essence. The larger k is,
the more complicated this model is. The extreme cases are
k =1 and k = min(m, n). When k = 1, it is the Generalized
Bilinear Regression (GBR) model. When & = min(m, n),
SMR tends to be the traditional vector based regression model.
In other words, the first objective of SMR can be regarded as
the trade-off between these two models.

Different parameters play different roles in the model and it
is difficult to determine the optimal parameters simultaneously
by the same way. We determine them in a heuristic way by two
dimensional grid search. Concretely, we vary both of them in
the predefined ranges and select the parameters corresponding
to the best performance. In the next section, we will give some
experimental results to show their influence.

C. Computational Complexity

As seen from the procedure of SMR in Algorithm 1,
the most computational steps of SMR are updating 4, b,
using (23), and updating v, b, using (35). In (23), it is
the solution to regularized least squares problem in (22) and
the computational complexity is O (m2k?). Correspondingly,
the computational complexity in (35) is O(n’k?). Assume
that the total number of iterations is 7. The computational
complexity of SMR is O (max{m?, n®}xk?xcxT). Traditional
vector based regression model takes m x n vector as the
input and its computational complexity is O(m?n® x c¢).
Commonly, T is less than 30 and k is far less than min{m, n}.
Thus, the computational complexity of SMR is far less than
traditional regression model.

V. EXPERIMENTS

In this section, we compare SMR with other popular vector
based feature selection approaches on several public data sets.
We also provide several results for convergence behaviour,
parameter determination and computational cost.

A. Data Description and Evaluation Metric

In our experiments, four public data sets are employed to
show the performance of different feature selection methods.
They are three face image data sets, including ORL, PIE? and
Umist,> one handwritten digit data, i.e., USPS.# The statistics
of the data sets are summarized in Table I.

To test the quality of selected features, we employ two
different kinds of evaluation metrics, i.e., accuracy-the classi-
fication accuracy achieved by classifier using the selected fea-
tures; redundancy rate (RED)-the redundancy rate contained

2http://Vasc.ri.cmu.edu/idb/html/face/index.html
3http://researchwebAiiit.ac.in/"chetan/face—retrieval—php/
4http://www.csie.ntu.edu.tw/"cjlin/libsvmtools/datasets/
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TABLE I
DATA SET DESCRIPTION

Data # of points  # of features  # of classes Type
ORL 400 32 x 32 40 Image, Face
PIE 11554 32 x 32 68 Image, Face
Umist 575 28 x 23 20 Image, Face
USPS 2007 16 x 16 10 Image, Digit
cat
3 a = = - [ ] = 1 l --Ii
SRk b
p oW = = oo, el
L r 1 r 1 L] — 1 i i
e g N R Tl |
b b i
Fig. 3. Feature selection results on the occluded ORL image. From top to

bottom, the number of selected features are 100, 150 and 200. From left to
right, the methods are IG, ReliefF, FisherScor, RFS and SMR. The rightmost
column contains the original image.

in the selected features. Intuitively, an ideal feature selec-
tion approach should select features with high classification
accuracy and few redundancy. The redundancy is a popular
evaluation metric for feature selection. It measures the quality
of selected features directly, without employing the following
tasks. Assume F is the set of selected features and X is the
data represented by the features in F. The following metric
measures the redundancy rate of F [38]:

1
RED(F) = (7071 2

S,',Sj€.7'—,i>j

corr; j, (36)

where || is the cardinality of F and corr; ; is the Pearson cor-
relation coefficient between two features s; and s;, computed
by using the data points in Xz. This measurement assesses
the averaged correlation among all feature pairs, and a large
value indicates that many selected features are correlated and
thus high redundancy is expected to exist in F.

To compute the classification accuracy, we use the 1-Nearest
Neighbourhood classifier (NN for simplicity) [3] to perform
classification on the data with selected features. We randomly
select a fixed number of examples from each category as train-
ing data and the rest are assigned as testing data. We perform
feature selection on training data.

In the following, we compare SMR with six popular feature
selection approaches. 1) Information Gain (IG) [27], which
measures the number of bits of information obtained for
prediction of a class by knowing the presence or absence of a
feature. 2) ReliefF [29], which evaluates features based on how
well the feature differentiates between neighboring instances
from different classes versus from the same class. 3) Fisher
Score (FisherScor) [3], which uses discriminative methods and
generative statistical models to determine the most relevant
features for classification. 4) Robust Feature Selection (RFS)
[30], which selects features with robust regression manner.
Concretely, the authors replace the £>-norm in traditional lease
squares regression by the ¢ j-norm to enhance robustness of
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Fig. 4.

regression. 5) Global and Local Structure Preservation frame-
work for Feature Selection (GLSPFS) [13], which integrates
both global pairwise sample similarity and local geometric
data structure to conduct feature selection. 6) Discriminative
Feature Selection (DFS) [26], which combines the popular
transformation-based dimensionality reduction method LDA
and sparsity regularization for feature selection. Besides,
we also compare our method with 2DLDA, which is the
most popular supervised two dimensional feature extraction
approach. Moreover, the results of NN are also reported as
the baseline.

In the implementation of SMR, we set p = 1 when
comparing it with other algorithms since the efficiency of
the £ 1-norm in feature selection has been demonstrated
in many studies [5], [30]. Previous results show that the
selection of p does not take a great influence on the sparse
constraint, i.e., {2 ,, which is designed for feature selec-
tion [5]. For simplicity, the parameters, a and k, are deter-
mined by two dimensional grid search in a heuristic way.
Concretely, the regularization parameters o are tuned from
{0.001,0.01, 0.1, - - - , 1000} and the k parameter is tuned from
{2,4,---,10}. The parameters in other algorithms are also
tuned by grid search.

B. Toy Example

To show that SMR could use location information in feature
selection, we add noise to the images from the first two classes
of ORL data. The typical images are shown in Fig. 1. The
eyes from each face are occluded by noise sampled from the
uniform distribution in the range [0,0.6]. We compare SMR
with other four vector based feature selection approaches and
show the results in Fig. 3. From top to bottom, the num-
ber of selected features are 100, 150 and 200. From left
to right, the methods are IG, RelieF, FisherScor, RFS, and
SMR. The features, which are not selected, are shown in
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Classification results of different methods on four different data sets with different numbers of selected features. (a) ORL. (b) PIE. (¢) Umist.

white. The rightmost column contains the original image. The
parameter settings are the same as follows.

As seen from the results in Fig. 3, it is clear that SMR could
use the block wise structure information by treating element
in each row (or column) as a part. This type of occlusion can
be detected and rarely selected. Other methods, which treat all
the pixels equally, select the pixels from the noisy occlusion,
since they only choose the features with more discriminative
power and omit the location information. With the increase
of selected feature number, there are more and more useless
features (features from the occlusion), which are selected by
other methods. Certainly, this is just a toy example. It is not
guaranteed that SMR is totally resilient to this type of noise.
For example, we cannot guarantee that SMR can tackle this
type of noise at any level.

C. Comparison Between SMR and Other Algorithms

In this section, we provide some numerical results on four
data sets using the above mentioned two metrics.

We report two groups of experiments. In the first group,
we compare the classification accuracy of different methods.
Since different data sets have different scales, we randomly
select 5, 6, 4 and 4 data points per class from ORL, PIE, Umist
and USPS data sets as training samples and the remaining
data composes the test examples. For each data set, the total
number of features is listed in Table I. We set the number
of selected features between 50 and 600 with an interval
50 for all data sets except USPS since its data scale is small.
Correspondingly, we set the reduced dimensionality of 2DLDA
with the same numbers. Since the aim of feature selection is to
find compact representation, we have constrained the number
of selected features within a small range and not reported
the results with all features. Each feature selection algorithm
is first performed on training data to determine the selected
features. Then, we train a classifier on training data with only
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TABLE 1I
FEATURE REDUNDANCIES (RED) ON THE PIE AND USPS IRIS DATA SETS

dataset s 1G ReliefF FisherScor RFS GLSPFS DES SMR
PIE 50 0.68931+0.0001 | 0.4119+0.0441 | 0.476240.0651 | 0.42454+0.0235 | 0.4146+0.0435 | 0.410840.02738 | 0.4079+0.0213
100 0.6912+0.0002 | 0.3972+0.0351 | 0.4766+£0.0599 | 0.4159+0.0163 | 0.4126+0.0377 0.4141+0.0174 0.4038+0.0130
150 0.6991+0.0001 | 0.3963+0.0345 | 0.4752+0.0533 | 0.4145+0.0110 | 0.4021£0.0317 0.4119+0.0158 0.4009+0.0134
200 0.6963+0.0001 | 0.3995+0.0349 | 0.4721+£0.0457 | 0.4115£0.0113 | 0.4026+0.0249 0.4069+0.0120 0.3980+0.0147
250 0.6922+0.0002 | 0.4043+0.0355 | 0.4693+0.0400 | 0.4097£0.0097 | 0.4056+0.0249 0.4025+0.0086 0.3939+0.0127
300 0.6650+0.0002 | 0.4087+0.0333 | 0.4674+0.0379 | 0.4093+0.0084 | 0.4061£0.0219 0.4042+0.0088 0.3910+0.0115
350 0.6602+0.0001 | 0.4148+0.0316 | 0.4640+0.0355 | 0.4074=£0.0077 | 0.4073£0.0202 0.4064+0.0079 0.3904+0.0103

dataset s 1G ReliefF FisherScor RFS GLSPFS DFS SMR
USPS 10 0.4060+0.0962 | 0.2882+0.0695 | 0.4307+0.1101 | 0.4023+0.0741 | 0.2128+0.0493 0.2058+0.0312 0.2010+0.0216
20 0.4059+0.0596 | 0.2586+0.0432 | 0.3794+0.0639 | 0.3685+0.0525 | 0.2130+0.0226 0.208340.0281 0.2053+0.0136
30 0.38914+0.0546 | 0.2436+£0.0352 | 0.361240.0620 | 0.346240.0438 | 0.2198+0.0188 0.21384+0.0170 0.2098+-0.0083
40 0.3599+0.0388 | 0.2379+0.0299 | 0.3399+0.0517 | 0.3305£0.0338 | 0.2188+0.0172 0.2190+0.0149 0.2156+0.0142
50 0.3368+0.0355 | 0.2328+0.0255 | 0.3249+0.0431 | 0.3165+0.0286 | 0.225540.0172 0.2253+0.0131 0.2208+0.0139
60 0.3153+0.0289 | 0.2296+0.0227 | 0.3114+0.0377 | 0.3043+£0.0228 | 0.227540.0146 0.2221+0.0106 0.2216+0.0116
70 0.2961+0.0302 | 0.2254+0.0191 | 0.3009+0.0334 | 0.2938+0.0195 | 0.2271£0.0137 0.2268+0.0111 0.2242+0.0105

the selected features. After that, we use the trained classifier
to classify testing data with selected features. We repeat this
procedure for 20 independent runs and the mean classification
accuracies are the final results shown in Fig. 4.

In the second group, we also calculated the RED measure,
defined in (36), between selected features. Since NN and
2DLDA are not feature selection methods, we omitted their
results. The parameters are the same as that in the first
group of experiments. With different training data, we have
different rankings of all features. In each run, we select the
most important s features to formulate the set F in (36)
and compute the RED values. Here, corr;; is computed
using all data points. For each approach, the mean and
standard derivation of 20 independent RED values are shown
in Table II. Due to the limitation of space, we only report the
results on two representative data sets. The smallest values,
which indicate the best performances of feature selection, are
boldfaced.

As seen from the results in Fig. 4, the classification accu-
racies of different feature selection approaches vary with the
increase of the number of selected features. For data sets, such
as PIE, USPS, with more selected features, all feature selection
approaches seem to achieve higher classification accuracies.
A similar tendency can also be found on another two data
sets, with only IG’s performance fluctuating. Nevertheless, its
classification accuracy fluctuates within a certain range. This
may be caused by the fact that we only select a small number
of features. Besides, the above tendency does not mean that
all methods perform better with more features. For example,
the results of NN are not always the highest for all methods.
Besides, with the increase of the number of selected features,
the performance of all methods approach that of the baseline,
with the NN classifier. It is consistent with intuition. When we
selected all features, all the methods achieve the same results.

In terms of the classification accuracy, we have the follow-
ing observations. 1) Comparing with other feature selection
approaches, SMR outperforms all the other feature selection
methods on all data sets in most of the time. For example,
on the PIE data sets, compared to the best result of all
the other methods, SMR gets about 7% improvements in

g

=
&

the objective function values
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the number of iterations

Fig. 5. Objective values of SMR with different numbers of iterations on the
ORL data.

average. On the USPS data, the average improvements are
about 5%. In terms of the RED results, SMR also performs
the best. The above mentioned improvements can also be
seen from the results in Table II. On the PIE data, our
method consistently performs better than all the other feature
selection approaches. 2) Comparing with the baseline NN
classifier, SMR outperforms NN in the first three data sets.
On the USPS data set, the baseline with NN achieves the best
results. It achieves higher accuracies than all the dimension-
ality reduction approaches, including all the feature selection
approaches and feature extraction approaches, i.e., 2DLDA.
The reason may be that the original representation of USPS
data is compact enough and it is not necessary to reduce
its dimensionality. 3) Comparing with 2DLDA, which is a
representative supervised two dimensional feature extraction
approach, SMR achieves comparable performance. Moreover,
as show in Fig. 4, when the number of reduction dimension-
ality is large, SMR outperforms 2DLDA in all data sets. This
may be caused by the reason that with a little more features,
the original representation is good enough or even better
than the translated formulation derived by feature extraction
approach. 4) Comparing with the accuracies on other data sets,
the classification accuracies of all methods on the PIE data
set (Figure 4(b)) is quite low. It may be due to the fact that
the number of categories of PIE is larger than other data sets.
Besides, the number of testing examples is also much larger
than other data sets.
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Fig. 6. Classification accuracies of SMR with different parameters. (a) Classification accuracies on the Umist data with different o and k; (b) Classification
accuracies on the USPS data with different a and k; (c) Classification accuracies on the Umist data with fixed o and different k; (d) Classification accuracies
on the USPS data with fixed o and different k. We fixed o as the optimal parameter determined by grid search shown in (a) and (b).

TABLE III
COMPUTATIONAL TIME COMPARISON ON FOUR DATA SETS

dataset 1G ReliefF FisherScor RFS GLSPFS DFS 2DLDA SMR
ORL 0.47+0.07 | 1.76+0.12 | 1.854+0.05 | 1.21£0.02 | 0.95+0.18 | 45.93+0.43 0.1540.13 40.361+0.47
PIE 0.704+0.08 | 4.714+0.17 | 2.404+0.26 | 3.424+0.31 | 4.17+0.28 | 38.14£1.10 | 98.374+1.61 | 68.44+2.65
Unmist 0.264+0.06 | 0.4340.03 | 0.63+0.06 | 0.244+0.01 | 0.224+0.05 | 12.36+0.52 0.1640.03 7.5040.29
USPS 0.114£0.03 | 0.114£0.04 | 0.1740.08 | 0.05+0.03 | 0.04+0.01 1.1740.07 0.4140.08 1.1240.10

D. Convergence and Parameters Determination

To show the convergence behaviour, we report the objective
function values on the ORL data set, since the algorithm
has similar convergence behaviour on other data sets. The
convergence curves are displayed in Fig. 5. As seen from
Fig. 5, the objective function values are non-increasing during
the iterations and it converges to a fixed value.

As for parameter determination, the k parameter plays
an important role in balancing the capacity of learning and
generalization. The parameter o balances the effectiveness
of regression and feature selection. In our paper, we use
the grid search to determine them heuristically. Concretely,
we randomly choose some training points as validation sam-
ples, vary the parameters within predefined sets and find the
parameter combination that can achieve the highest classifi-
cation accuracy on validation points. To show their influence,
we present the classification accuracies of SMR with different
combinations of k and a on the Umist and USPS data sets
for illustration. The results are shown in Fig. 6(a) and (b).
Besides, to show the effectiveness of multiple regression
vectors, we also want to show the unique influence of k.
A group of results with fixed o and various k is presented.
With different numbers of training points, we vary k with a
large range( k should be within the range [1, min{m, n}]) and
show the results in Fig. 6(c) and (d).

As seen from Fig. 6(a) and (b), with different combinations
of k and a, the performance of SMR varies. In our exper-
iments, since the parameters k and o change within large
ranges, the performances of SMR also changes drastically.
It demonstrates that the two parameters are vital to dominate
the performance of SMR. Besides, for higher values of a,
it seems that the chosen value of k it is not important.
It may be caused by the fact that, with large a, we will
emphasize on the regularization term in (10). The optimal
solution to (10) is all zeros and the influence of k will be weak.

It is still a challenging problem to find suitable parameter
setting for specific data. Thus, in real applications, we run the
algorithm in different parameter settings and choose the best
one. Besides, as shown in Fig. 6(c) and (d), with the increase
of k, the fitting error decreases. However, the classification
accuracy does not always increase consistently. This is due
to the fact that k& is a parameter to balance the influences
of training error and capacity of generalization. They also
validate the effectiveness in using multiple regression vectors.

E. Computational Time Comparison

In this section, we will compare the computational time
of different methods. We conduct experiments on above
mentioned data sets. For illustration, we compare SMR with
IG, ReliefF, FisherScor, RFS, GLSPFS and DFS. Since NN
is evaluation method and all the other approaches employ
them for classification, we have not compared with them.
For justice, these methods are all implemented in their orig-
inal formulation, without using other accelerating strategies.
Similar to the setting in Fig. 4, we fixed number of training
points and randomly select training points for 50 runs. With
a naive MATLAB implementation, the calculations are made
on a 2.7-GHz Windows machine. The CPU time of different
methods are listed in Table III

There are also some observations from these results.
1) Among different methods on different data sets, IG con-
sumes the least time. Since SMR needs to made iterations,
it costs more time. Nevertheless, the final output of SMR is
the ranking of features. The little variance of objective function
values, caused by the litter variance of optimal variables,
takes small influence on the ranking of features. In most
cases, the final feature ranking will not change after a few
iterations. Thus, to save time, we can make a quick stopping
criterion by measuring the difference of two adjacent ranking.
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2) The computational time of different methods is dominated
by different factors. For example, the dimensionality is the key
factor in dominating the computational time of DFS and our
method, whereas the number of points takes great influence
on the computational efficiency of 2DLDA.

VI. APPLICATIONS TO SCENE CLASSIFICATION

As a major open challenge in computer vision, scene
classification (e.g., indoor, mountain, etc.) is an important
task in visual understanding. It tries to represent the highest
level concept (scene class) that an image depicts. Scene
classification has received a lot of attention since the birth
of this subject in computer vision [1]. We will test our feature
selection approach in this challenging application scenario.

The common procedures of our experiments are listed as
follows. 1) As in traditional scene classification approaches
[11, [39], [40] we use the well-known feature descriptor to
characterize each image. We do not employ our method on
the raw features of original images since the images in this
task are complicated and the raw features are not good enough

Representative examples from OT and LSP data sets. The first five categories contain examples from OT and the last three columns are additional
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Classification accuracies of different methods on two scene classification tasks with different numbers of selected features. (a) OT. (b) LSP.
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The MAP results of different methods on two scene classification tasks with different numbers of selected features. (a) OT. (b) LSP.

to describe them. Previous works have also shown that taking
the raw features as the input will degrade the performances
[1], [41]. In our approach, we first use the four-level pyramid
model to segment original images into 1, 4, 16, and 64 patches,
respectively. In each patch, we use the 128-dimensional SIFT
features, which are extracted from the particular interest points
in the images. They are local and invariant to image scale
and rotation, and robust to changes in illumination, noise,
and minor changes in viewpoint. Consequently, the description
of each image is a 128 x 85(1 + 4 + 16 + 64) matrix.
This matrix is then employed as the input of our algorithm.
2) We use different feature selection models to select the most
important features. 3) After feature selection, all the images
are represented by low dimensional vectors. As in previous
experiments, we randomly separate the data into training and
testing. The NN classifier is employed for scene classification.

Two commonly used data sets for scene classification,
ie., OT [39] and LSP [40], are employed for evaluation.
OT contains 2,688 images from eight categories: 360 coasts,
328 forest, 374 mountain, 410 open country, 260 highway,
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308 inside of cities, 356 tall buildings, and 292 streets. The
average resolution of each image is 250 x 250 pixels. LSP
includes 15 categories and is only available in gray scale.
It consists of the 2,688 images (eight categories) of the OT
data set plus: 241 suburb residence, 174 bedroom, 151 kitchen,
289 living room, 216 office, 315 store, and 311 industrial. The
average resolution of each image is approximately 250 x 300
pixels. To show them intuitively, we have selected several
images and presented them in Fig. 7. The first five categories
are original images from OT data sets and the last three
columns contain images from LSP solely. As seen from the
example images, the scene classification task on LSP is more
difficult since the backgrounds are more complicated.

Besides classification accuracy, as in the literature, we also
employ another popular metric, i.e., Mean Average Preci-
sion (MAP), for evaluation [41]. MAP is commonly used for
evaluating ranked lists in Information Retrieval. Suppose we
are building a system to classify images of scene j°audito-
riumj+. Let the system be evaluated on a test set. A good
classifier is good at ranking actual j°auditorium;+ images near
the top of the list. The performance of the classifier is mea-
sured by a single number called as Average Precision (AP). For
the multi-class classification problem, the performance can be
measured by the mean of AP (MAP) values of the individual
classifiers.

In our experiments, the other settings are the same as in
previous experiments. The classification accuracy and MAP
comparison results are shown in Fig. 8 and Fig. 9, respectively.
As we can see from the results in Fig. 8 and Fig. 9, it is obvious
that SMR outperforms other feature selection approaches in
most cases on the task of scene classification, no matter which
kind of data sets and metrics we have employed. It indicates
that our method can select the most discriminative features
from different levels of the pyramid model and different
directions of SIFT features. The reason may be the same as
in previous experiments, i.e., considering spatial correlations
and leveraging learning mechanism.

Interestingly, when the number of selected features is
increasing within our predefined range, the improvement is
more significant. This may be caused by the reason that a
small number of features are not enough for distinguishing
images from different categories. The performances of all
methods degrade when the number of selected features is
small. Moreover, due to the differences in data characteristic,
the performances of different methods vary on different data
sets. For example, RFS performs well on LSP data, while its
performance is not so good on OT data. Besides, since LSP is
the extension of OT and the task on LSP is more complicated
than that on OT, all methods seem to achieve better results on
the OT data set.

VII. CONCLUSION

In this paper, we aim to provide insights into the feature
selection for matrix, or tensor data, directly, as well as to
facilitate the design of new tensor algorithms. A novel algo-
rithm named as SMR has been proposed. Sparse constrains
are designed for feature selection. As illustrated in this paper,
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SMR has been shown to be more effective in selecting features
for matrix data. Moreover, this algorithm can be extended to
high order tensors directly. A byproduct of this paper is a
series of theoretical analysis and some interesting optimiza-
tion strategies. One of our future works is to systematically
compare all possible extensions of the algorithms developed
by different configurations of » and p in sparse regularization
term, including its theoretical analysis and solving strategies.
Another open problem is the selection of parameter k and a,
which is an unsolved problem in many learning algorithms.
In this paper, they are empirically determined. Additional
analysis with different classifiers is also needed for this topic.
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