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Dimension Reduction for Non-Gaussian Data
by Adaptive Discriminative Analysis

Tingjin Luo, Chenping Hou

Abstract—High-dimensional non-Gaussian data are ubiquitous
in many real applications. Face recognition is a typical example
of such scenarios. The sampled face images of each person in
the original data space are more closely located to each other
than to those of the same individuals due to the changes of
various conditions like illumination, pose variation, and facial
expression. They are often non-Gaussian and differentiating the
importance of each data point has been recognized as an effec-
tive approach to process the high-dimensional non-Gaussian data.
In this paper, to embed non-Gaussian data well, we propose a
novel unified framework named adaptive discriminative analysis
(ADA), which combines the sample’s importance measurement
and subspace learning in a unified framework. Therefore, our
ADA can preserve the within-class local structure and learn
the discriminative transformation functions simultaneously by
minimizing the distances of the projected samples within the
same classes while maximizing the between-class separability.
Meanwhile, an efficient method is developed to solve our formu-
lated problem. Comprehensive analyses, including convergence
behavior and parameter determination, together with the rela-
tionship to other related approaches, are as well presented.
Systematical experiments are conducted to understand the work
of our proposed ADA. Promising experimental results on various
types of real-world benchmark data sets are provided to exam-
ine the effectiveness of our algorithm. Furthermore, we have also
evaluated our method in face recognition. They all validate the
effectiveness of our method on processing the high-dimensional
non-Gaussian data.

Index Terms—Adaptive discriminative analysis (ADA), dimen-
sionality reduction, face recognition, high-dimensional non-
Gaussian data, linear discriminant analysis (LDA).

I. INTRODUCTION

IGH-DIMENSIONAL non-Gaussian data [1]-[4] are
Hubiquitous in many real applications, especially in the
fields of face recognition [5]-[9]. Due to the effect of the
changes of uncontrolled conditions like complex backgrounds,
illumination, pose variation, occlusion, and facial expressions,
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Fig. 1. Dashed line is one projection of LDA, and the solid line is one
projection of ADA, for two artificial data sets. (a) Data of each class is sam-
pled from a Gaussian distribution. (b) One class is sampled from a Gaussian
distribution, while the other class is sampled from a Gaussian mixture model
with two kernels. Note that LDA fails to find the optimal direction in the case
with non-Gaussian distributed data.

in the original feature space the sampled face images of dif-
ferent persons are located more closely than those of the
same individual. If we assume such type of data are Gaussian
distributed, the domain of Gaussian variable violates the
boundary property. Therefore, face recognition [8], [10], [11]
is a typical example of such scenarios. Moreover, face recog-
nition plays an important role in security systems and intel-
ligent surveillance system. It is still a hot topic in the area
of machine learning, computer vision and pattern recog-
nition. However, directly processing such high-dimensional
non-Gaussian data not only degrades its performance but
also is time consuming [12]-[16] in learning tasks. To solve
this problem, many dimensionality reduction methods have
been introduced for data processing, such as non-negative
matrix factorization-based methods [17], [18], k-dimensional
coding schemes-based methods [19], and so on. While dimen-
sionality reduction can be applied to both supervised and
unsupervised learning, we focus on the problem of supervised
learning for non-Gaussian data, where the label information is
available.

Although non-Gaussian data arises in many fields, the
original data is always assumed as Gaussian distributed
in the traditional methods, such as linear discrimina-
tive analysis (LDA) [3], [20] and its variants unrelated
LDA (ULDA) [21], orthogonal LDA (OLDA) [22], [23],
max-min distance analysis [24], and weighted Harmonic
mean of trace ratios for multiclass discriminant analy-
sis (WHMDA) [10], [25]. Placing the Gaussian assumption
on the non-Gaussian data will discards a great deal of useful
structural information [3], [26]. As seen from the toy example
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in Fig. 1(left), the methods based on Gaussian assumption will
fail to solve the non-Gaussian data. To address this problem,
many dimensionality reduction algorithms [11], [27]-[29] have
been proposed in the literature.

According to the ways to incorporate in evaluating and
measuring the contribution of samples, the dimensionality
reduction methods for non-Gaussian data can be organized
into two categories.

1) Locality-based methods [27]-[29], which differentiate
the importance of samples using the local structure
chosen by k-nearest neighbors (kNNs) method.

2) Adaptivity-based methods [11], [26], which measure the
contribution of instances by the training data adaptively.

To process the non-Gaussian data well, Qiu and Wu [29]
proposed stepwise nearest neighbor discriminant analysis
(SNNDA) which further extended nonparametric discriminant
analysis method [30] with a stepwise process based on margin
maximum criterion [31] and the local structural information.
However, the stepwise process is time-consuming, and in the
construction of the scatter matrices, the values of the weight
matrix are empirical and only the nearest neighbor is used,
which is sensitive to noise. Nie et al. [27] proposed neigh-
borhood minmax projections (NMMPs) by using the pairwise
points where the two points are neighbors of each other.
Fan et al. [28] proposed local LDA (LLDA) using sample
neighbors selected by kANN and adding the affinity matrix to
weight the importance of samples.

To measure the importance of samples adaptively,
Roweis and Saul [12] and Belkin and Niyogi [32] proposed
locally linear embedding and Laplacian eigenmaps (LEs) to
distinguish the contribution of samples adaptively and preserve
the local structural information by heat kernel, respectively.
However, this nonlinear property makes them computation-
ally expensive. Moreover, they yield mappings that are defined
only on the training data points and it remains unclear
how to naturally evaluate the maps on new-coming testing
points. Thus, He and Niyogi [26] proposed local preserve
projections (LPPs), which is a linear approximation of the
nonlinear LE. However, LPP is an unsupervised dimension-
ality reduction method and does not use the label information.
LPP may not obtain good performance for classification
task. Thus, Sugiyama [11] proposed local Fisher discriminant
analysis (LFDA) to preserve within-class local structure by
combining the ideas of LPP [26] and LDA. LFDA adopts the
two-step strategy, which first computed the importance of each
sample in the same class by kKNN-based heat kernel [26] and
then extracted the new feature representation.

From the above analysis, we can easily find that, differenti-
ating the importance of each data point is an effective strategy
to process the high-dimensional non-Gaussian data. The idea
of differentiating the importance of samples has been applied
into many machine learning methods. For example, support
vector machine (SVM) [3], [33] computes the optimal classifi-
cation hyperplane and boosting methods [34], [35] obtains the
weak learners by adaptively weighting the importance of each
sample. Furthermore, compared with processing Gaussian dis-
tributed data, the locality and adaptivity are two effective
approaches to discriminate the importance of each sample for
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TABLE I
NOTATIONS AND DEFINITIONS

Notations Descriptions

d Dimensionality of the original data
n Data size

c Number of classes

m Reduced dimensionality

x; eR4 The i-th data point

N (x) The k nearest neighbors of x

yi €N The label of i-th data point

x{.‘ e R4 The i-th data point in the k-th class
X; € R Data matrix in the i-th class

X ¢ Réxn Data matrix

y eN" The labels of X

u € R4 The total sample mean vector

u; eR4 The mean vector of the i-th class
S; e RAxd Total scatter matrix

S,, € Rdxd Within-class scatter matrix

Sp, € Rxd Between-class scatter matrix

W e R4xm Transformation matrix

the non-Gaussian data. Nevertheless, these existing locality-
based methods require many parameters to construct the model
and cannot weight the importance of instances automatically,
while these adaptivity-based methods measure the importance
of samples adaptively only in the original feature space.
Therefore, we propose a novel adaptive approach to mea-
sure the importance of samples adaptively and simultaneously
preserve the local structural information.

Based on the adaptive approach, we introduce a novel
framework, referred to as adaptive discriminative analysis
(ADA), for high-dimensional non-Gaussian data. To embed
non-Gaussian distributed data well, it combines the sample’s
importance measurement and subspace learning into a unified
framework. Some popular methods such as LDA and LFDA,
can be viewed as special cases within the proposed framework.
By using this approach, ADA not only discriminate the contri-
bution of each instance in the same class, but also weights the
importance of instance in the learned low-dimensional feature
space automatically. ADA learns the optimal transformation
matrix to preserve more discriminative information by max-
imizing the similarity of pairwise within-class samples. As
illustrated in Fig. 1, ADA can discover the most discrimina-
tive direction in both cases, while LDA fails to find the optimal
discriminative directions for non-Gaussian data. We also pro-
vide an efficient method to solve the proposed problem in an
alternate way. Meanwhile, comprehensive analyses, including
convergence behavior and the relationships to other related
approaches, are provided. Compared with traditional methods,
our algorithm is demonstrated to have better performance on
systematic data and various types of real-world benchmark
data sets. Furthermore, we have also evaluated our method
in a real application scenario: face recognition. These results
all verify the effectiveness of ADA. Besides, we highlight the
contributions of this paper as follows.

1) Propose an unified framework for supervised dimen-
sionality reduction of high-dimensional data, which
combines the measurement of samples’ importance and
the subspace learning.

2) Provide an unified view to analyze many traditional
methods by our proposed framework. Furthermore, it
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encourages us to develop a new algorithm for high-
dimensional non-Gaussian data.

3) Develop an efficient method to solve our formulated
problem and rigorously analyze the performance of our
method in aspects of the convergence behavior and
connection with related methods.

4) Evaluate the effectiveness of ADA by extensive exper-
imental results on synthetic data and various kinds of
real-world data sets. Moreover, We apply ADA to face
recognition and demonstrate its promising performance
in real applications.

5) Only one parameter needs to be tuned in our model.

The rest of this paper is organized as follows. Section II

summarizes the related works. We formulate the proposed
ADA and provide an effective method of solving this prob-
lem in Section III. We discuss convergence analysis and the
relationships to prior related works in Section IV. Section V
provides promising comparison results on various kinds of
data sets. We evaluate our method on face recognition in
Section VI, followed by the conclusions and future works in
Section VII. For convenience, the important notations used in
this paper are summarized in Table 1.

II. RELATED WORK
A. Review of Linear Discriminant Analysis

Let X = [x1,...,x,] € R9*" be a data matrix consisting
of n data points in R, In classical LDA [3], the within-class
and between-class scatter matrices are defined as

SwleZ(x—ui)(x—ui)T

ni:lxeX,-

I O
Sb—nanul u)(u; — u) (1)

i=1

where X; represents the feature set of ith class, n; and u; are the
sample size and the centroid of ith class, respectively, and u is
the global mean vector of X. It follows from the definitions that
tr(S,,) measures the within-class cohesion and tr(S;) measures
the between-class separation, where tr(-) of a square matrix is
the summation of its diagonal entries. The objective function
of classical LDA [23] is formulated as

max
WeRdxm

w((WTsW) WIS, W). @)

The problem in (2) has a closed form solution, i.e., the m
eigenvectors of S; IS, corresponding to the m largest nonzero
eigenvalues, provided that the within-class scatter matrix S,, is
nonsingular [3], [23]. Note that classical LDA does not handle
singular scatter matrices, which limits its applicability to the
high-dimensional under-sampled problems. Several methods,
including ULDA [21] and OLDA [22], [23], were proposed
to deal with such singularity problem. The key properties of
ULDA is to obtain the uncorrelated feature and reduce the
redundancy in the lower-dimensional space. ULDA aims to
find the optimal S;-orthogonal discriminant vectors.! ULDA

IFor any vectors x and y are S;-orthogonal, if xTS[y =0.
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aims to compute the optimal W, such that
max_t( (WS, W) WS, W) 3)
WIS, w=I

where S; = S,, +S;, is the total scatter matrix. OLDA requires
that the discriminant vectors are orthogonal to each other. The
optimal transformation in OLDA can be computed by solving
the following optimization problem:

max

T T
max tr<(W sw) ' w is) )

where Mt denotes the pseudo-inverse of matrix M. Finally,
the optimal transformation of OLDA can be computed by
diagonalizing the three scatter matrices simultaneously.
However, ULDA and OLDA still fail to solve the high-
dimensional non-Gaussian problems, since they are same as

classical LDA under the assumption of Gaussian distribution.
LLDA and LFDA were proposed to deal with this problem.

B. Local Linear Discriminant Analysis

Fan et al. [28] proposed an LLDA framework for the non-
Gaussian distributed classification problem. LLDA captures
the local structural information using training sample neigh-
bors chosen by kNN. The within-class and between-class
scatter matrices are defined as follows:

S, =%, i@ — i) (@ — )"

S=v (- ow)

where ¢, n;, 5:}, u;, and u are the number of classes, the num-
ber of the ith class, the jth sample, the mean vector of the
ith class, and the mean vector of the total k determined near-
est neighbors, respectively. Then, based on the local Fisher
criterion, the objective function of LLDA is expressed as

~ -1 ~
max tr((WTSWW> WTS;,W). 6)
C. Local Fisher Discriminant Analysis

LFDA [11] incorporates the merits of LPP and LDA for
supervised dimensionality reduction. The main idea is that
both S,, and S, are weighted by the affinity matrix A of
the training data. Each element of A is calculated using a
local scaling method [36], i.e., choosing kNNs and assigning
individual scaling for samples

A — !exp(—ﬁ”xi —xjng), Xj € Ni(x)
l‘/ - .
0, otherwise

where J\[k(') represents the kKNNs. With the use of affinity
matrix, S,, and S;, can be computed by

A Ab T
i Sp = 20 j=1 Ay (xi = x;) (xi = x;) .
n
Sy = Zi,jzl Ag(xi _xj) (xi - xj)
where AZ = Aij /k if x; and x; belong to the same class, other-
wise A% = 0 and A% = A;((1/n) — (1/k)) if x; and x; belong
to the same class, otherwise /A\;’ =0.

@)
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Finally, the optimal transformation matrix W can be
obtained by solving the following objective function:

N —1 N
max tr((WTSWW) WTSbW>. (8)
w

III. ADAPTIVE DISCRIMINATIVE ANALYSIS FOR
SUPERVISED DIMENSIONALITY REDUCTION

A. Motivation and Formulation of Our Framework

Given the training data matrix X = [x1,...,Xx,] €
R4*" comprising examples of the input vectors along with
their correspondmg labels y = [y1,...,yn]. Denote X; =
[xl,.. X, ] € R¥*Mi(1 < i < ¢) as data matrix belong-
ing to the ith class. Thus the training data matrix X can be
represented as [Xi,...,X.]. 1 =[1,1 117 e R and

= [wi, ..., wn] € R is the transformation matrix.

As seen in Fig. 1, classic LDA [3], [20] and its vari-
ants [21], [23] perform poorly if samples in some class are
non-Gaussian distributed and form several separate clusters
(i.e., multimodal). The undesired behavior is by the glob-
ality property of the within-class scatter and between-class
scatter matrices in these methods. In other words, Gaussian
assumption with equal co-variance structure for the data is
too strong in LDA. It also leads to ignore the difference of
within-class and between-class samples. Intuitively, the contri-
bution of each sample in the same class should be not equal for
the non-Gaussian distributed data. For instance, the maximum-
margin hyperplane of SVM [3] is determined by the support
vectors (SVs), which are the samples nearest to the hyperplane.
Moreover, the hyperplane of SVM can be computed by its SVs
efficiently. Boosting methods [34] obtain the weak learners by
discriminating the importance of each sample gradually and
then improve the classification performance.

On the other hand, by analyzing the properties of mani-
fold learning methods [12], [26], [32], it can be found that
the global structure of nonlinear manifolds can be represented
by a locally linear structure and differentiating the impor-
tance of each sample is an effective approach to process
the non-Gaussian data. If data points are close in the origi-
nal high-dimensional space, these manifold learning methods
can make samples of different classes overlapped by persever-
ing local structure. Motivated by this idea, LLDA and LFDA
adaptively measure the importance of each instance by kNN-
based methods. However, LLDA and LFDA only measured the
importance of samples in the original feature space. Moreover,
they empirically adopted KNN-based method to compute the
sample’s importance. LLDA and LFDA are not only sensitive
to noise or outliers, but also required more priori information
to determine the number of nearest neighbors.

Considering the above analysis of LLDA and LFDA, the
sample’s importance measure and subspace learning interact
with each other. In the different feature spaces, the distribu-
tions of data points are very different and the contribution
of each sample in the same class will be different. The
optimal transformation matrix W will alter with the change
of sample’s importance. Therefore, the solutions of LLDA
and LFDA are not optimal, only measuring sample’s impor-
tance in the original feature space. Their performances can
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be improved. To solve these problems, we propose a unified
framework to jointly measure the sample’s importance and
extract the discriminative features for high-dimensional non-
Gaussian data. The objective function of this framework can
be summarized as

| Loq o
max 7 Z n—l Z Zexp(—& . I(W, le-, x}c>> 9)

i=1 " j=1 k=1

where 6 > 0 is the scale parameter and [(W,x xk) is a
metric which measures the distance between parrw1se points
x]i and xf{ in the projected space, such as Euclidean dis-
tance l(W x xk) ||WT(x — xk)||2 and {¢;-norm distance
(W, x}, x}) = | W (x] —xlh.

It 1s worth noting that (W, x xk) is able to preserve the
local structural information and the term exp(—6-I(W, x xk))
adaptively weights the similarity between the pairwise pomts
xj and xj in the low-dimensional feature subspace. When
W = [ is an identity matrix, exp(—4-I(W, x xk)) is equrvalent
to compute the similarity between the pa1rw1se points x and
xk in original feature space, that is, the samples’ 1mportance
measure of LLDA and LFDA is a spacial case of our frame-
work. Moreover, the formulation in (10) not only measures the
within-class similarity in the learning subspace, but it will also
help to choose the neighbors of current sample in the same
class automatically. For example, when the distance between
x and x; is very large, the value exp(—8-[(W, x xk)) will be
Very close to zero, that is xk is not the neighbor of x Another
benefit of this adaptive approach is to improve the robustness
to noisy data.

To embed non-Gaussian data well, we develop an novel
semisupervised dimensionality reduction method named ADA
based on our proposed framework (9). We adopt Euclidean
distance to measure the similarity between pairwise points.
The objective function of ADA can be simplified as

mv%x ZZ Ziexp(—(SHWTGc; —x;;) H2> (10)
j=1 k=1

Denote the total scatter matrix by S; = (1/n)X” HX, where
H =1 — (1/n)117 is the centering matrix. To avoid arbitrary
scaling and the trivial solution of all zeros, we constrain the
subspace with W/'S,W = I such that the data on transformed
subspace are statistically uncorrelated, as in ULDA [21]. Then,
the problem of ADA can be formulated as

;
. znZn,ZZeXP( s|w (s -)[)
s.t. WIS,w (11)

Compared with classic LDA, our ADA model in (11) is able
to process the non-Gaussian data and preserve the local struc-
tural information by differentiating the importance of each data
point. Different from LLDA and LFDA which find ANNs in
the original feature space, ADA finds the soft neighbors in the
optimal subspace to preserve more discriminative information.
Therefore, our ADA will be robust to noisy data and obtain
a better solution to process high-dimensional non-Gaussian
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Algorithm 1 Algorithm to Solve the Problem (11) by
Iteratively Efficient Way
Input: Training data X and its corresponding labels y.
Output: Optimal transformation matrix W.
Let t = 1. Initialize W; € R*™ such that W/'S,W = I,
while not converge do
1. Calculate each Al,i = 1,2,...,c as Eq. (13) and
Laplacian matrix L = (D — A)/n by W;;
2. Update transformation matrix W,y;. The columns of
the updated Wy, | are the first m eigenvectors of S;"XLX"
corresponding to the first m smallest eigenvalues; t =
t+1;
3. Check convergence condition (22): Div(t) < 107°.
end while

data. To solve this difficult problem, in the next section, we
will propose an efficient algorithm to optimize it.

B. Optimization

Based on the iterative optimization strategy, we propose
an algorithm as described in Algorithm 1 to solve the prob-
lem (11) of ADA. In each iteration, we first compute the
similarity of each sample by the current solution W;, and then
learn the optimal transformation matrix W;y1 by the updated
similarity information. The iteration procedure is repeated until
converges. From Algorithm 1, we can see our algorithm can be
easily implemented without using other optimization toolbox.

Denote the set C = {W € R>™|WTS,W = I} and

1 c 1 n; n; T ; ; )
bW = Z;E;;exp(_auw (s -=)]").

By the concept of functions, we know that ¢ (W) is a convex
and smoothed function. Therefore, in the ¢ + 1th iteration,
we can use the following quadric model to approximate the
original problem (11):

1 S . . N2
Wi —argmax— 53 Y —AL WT(x; — x;) H (12)
WeC 2n & 4 ; /
i=1 j=1 k=1
where
. S . . 2
A= exp(—aH Wf(x;. —x}() H ) (13)

Note that at W;, the objective function of (12) has
the same gradient as the problem (11). Denote A =
diag((Al,A2, ..., A% and a Laplacian matrix

L={D-A)/n

where D is a diagonal matrix with the jth element as Dj; =
Y 41 Ajk. The problem (12) can be written as the following
matrix form:

Wi =arg min  Tr(W/ XLX'W).

(14)
wr's,w=I

937

The Lagrangian function of the problem (14) is
LW) = Tr(W'XLX" W) — Tr(A(W'S,W —1)).

Taking the derivative of £(W) with respect to W, we have

oL
LW _ XLXTW — S,WA. (15)
aw
Setting the derivative in (15) to zero, we can obtain
XLXTW = S,WA. (16)

By the matrix theory, the problem in (16) is the generalized
eigenvalue problem. It is easy to show that the matrices XLX”
and S; are symmetric and positive semidefinite. Thus, the opti-
mal solution of W is the first m eigenvectors of S;”XLX”
corresponding to the first m smallest eigenvalues, where S;" is
the pseudo-inverse matrix of S;. The transformation matrix W
that minimize the objective function in (14) are given by the
minimum eigenvalue solutions to the generalized eigenvalue
problem in (16). For small sample size cases, ADA adopted
the similar strategy with OLDA [22], [23] and learned the opti-
mal transformation matrix by the pseudo-inverse matrix of S;,
instead of using the inverse matrix S; ! directly.

We iteratively update L. and W by (15), i.e., KKT condi-
tion holds. Note that L is not a variable to optimize. In the
iterative steps, we solve the problem (16) to update W, and
then recalculate (16), where L is only an intermediate value
to help calculate optimal W. The algorithm will converge to a
local optimum, which is proved in the next section.

IV. DIsSCUSSION
A. Convergence Analysis

In this section, we prove that the objective function of (11)
is nondecreasing under the updating rules of W and S in
Algorithm 1. First, the following lemma is introduced.

Lemma 1: Let f(x) = e % § > 0and x > 0, and the series
expansion of f(x) at xo is denoted as
—8e %0 (x —xp) —

1)
T(x, xp) = e %% Ee_‘sx‘) (x — x0)>.

For any x > 0, the following inequality holds:
8(x) =f(x) = T(x,x0) = 0.
Proof: According to differential and integral theory, we have
g () = =8¢ 4 870 4 §70%0 (x — xp).

Obviously, if x > xg, g'(x) > 0 and else g'(x) < 0 (x < xp),
80 x = x is the only minimum point. Therefore, for any x > 0,
we can get g(x) > g(xo) = 0. |

Theorem 1: The procedure in Algorithm 1 will monotoni-
cally increase the objective of the problem (14) in the each
iteration, and converge to a local optimum.

Proof: Let ;}C(W) = exp(=3| W' (x} —x)|1*). According to
Lemma 1, we have

T3 (W, Wo) = f1.(Wo) — 25, Woyur((W = Wo)T PiWo)

— 8 Woytr((W = Wo) Pl (W = Wo)
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and
[ W) = T (W, Wo), fi,(Wo) = Ti,(Wo, W) (17)
where ];’}{(Wo) = eXp(—5||Wg(x} - x;{)”z) and P,l:k = (sz: -
x) () —x;)". It is easily note that
T (W, Wo) = —afj’}{(Wo)tr(WTP’kW) + [ (Wo)
_ 3J;k(wo)tr(wg Wo) (18)

where f;}c(Wo) - 3];;(Wo)tr(wgp;kwo) is constant relative to
W. Thus in the (z+1)th iteration, the problem (14) is equivalent
to the following problem:

ni n;
Wit =arg max - Z ZZTk(W wo).
Li=1 k=1
The objective of LPP [26] can be formulated as
min  Tr(W' XLX' W) (19)
WIXDXT W=/

where L =D — A is the Laplacian matrix, A,;/ = exp(—d|lx; —
xj||%), and D is a diagonal matrix with the ith diagonal ele-
ment D;; = ZJ": 1 Ajj. By the analysis in [26], we know that the
problem (19) can obtain the optimal solution by the minimum
eigenvalue solution to the generalized eigenvalue problem and
has closed form solution. Note that the problem (14) has
the similar formulation with LPP after some matrix transfor-
mation. Thus, in (¢ + 1)th iteration, we obtain the optimal
transformation matrix W of the problem (14)

Wiy = arg mm tr(WTXLXW)
wi's,w=I

which indicates that

]k(Wt—i-l W) <
;jkzl ; Lk

By Lemma 1 and (17), the following inequality holds:

(Wz, W)
—. (20
2nn;

c i i f(Wepp) i M T Wiy, Wy)
Jk jk
TR BT
ni n; Z(W) c n n; T (W,W)
Eﬁmﬁg‘ﬁﬁﬁﬁ[t .
i = =1 =
Combining (20) and (21), we have

o S W) el oL i (W)

Yy YRRy y

i=1 j=1 k=1 i=1 j=1 k=1

That is to say

¢Wir1) = ¢(Wy).

Thus, Algorithm 1 will monotonically increase the objective
of the problem in (11) in each iteration ¢. Note that the objec-
tive function has upper bounds, so the above iteration will
converge. Therefore, Algorithm 1 will monotonically increase
the objective value in the each iteration until converges to a
local optimum. |
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As we use the transformation matrix W to get the new
feature representation, we also need to make clear the con-
vergence behavior of it. Following [37], we measure the
divergence between two sequential Ws at the kth iteration by
the following metric:

Div(k) = 3 | Wi [l - (22)
i=1

[well, |-

The metric defined above acts as an indicator to show
whether the final results would be changed drastically.

B. Connection to Related Approaches

In this section, we discuss the connections between ADA
and LDA, LPP, LLDA, and LFDA. Before going into the
details, let us first introduce the following lemma.

Lemma 2: S, = (1/m) Y0 (xi — w)(x; — u)T can be
rewritten as S; = (1/2n2)2 _1(x, xj)(x; — xJ) where
u=(1/n) Zl 1 xi [38]. Meanwhlle the matrix form of S; is
equivalent to S; = (1/n)XHXT', where H =1 — (1/n)117.

Proof: Substitute u = (1/n) Y i, x; into S;, we can get by

1< 1< 1)
vl n ) in)
111‘1 12 n ll n n

= ZIX; xix,-T— ;xinjT+;Zx,-ijT

=l j=1

1 n
= > xa - — Zx, Zx = —XHXT. (23)
i=1 i=1 j=1
On the other hand
1 n
T
2 > (xi = x) (x; — x;)
ij=1
I ¢ T T T
=57 Z(xixl- +xjx; — 2xixj)
ij=1
1 n 1 n 1 n n
— W T I e
=5 lex,- + n Zx]xj 7 Z Zx,xj
i=1 j=1 i=1 j=1
1 n 1 n n
— I . T
SPREEFI DL @
i=1 =1 j=1
Combining (23) and (24), the following equality holds:
1 ¢ S T
Stzzz;(xi_u)(xi_u) = WZ;(% xi —Xxj) .
= =

Therefore, the data covariance matrix S, can be rewritten as
the pairwise form S; = (1/n)XHXT. ]

Proposition 1: When § — 0, LDA in (2) can be regarded
as a special case of ADA in (11).
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Proof: As seen from (11) and (12), when § — 0, A]’:k — 1
and then the loss function is equivalent to

¢<W>=—§2122

||
M
M

(x —u) WW (x), —

+ H WT(xi - uf) [owe-wl o

where u; is the centroid of ith class. Note that Z DI
)TWWT(xk —u;) = 0, the problem (25) is equlvalent to

o =133 |w )
i=1j=

By the definition of within-class scatter matrix in (1), we
can easily obtain

(26)

PW) =
Therefore, the problem (11) is equivalent to

tr(W'S,, W)

—tr(WTSWW).

min

(27)
wr's,w=1

that is the equivalent form of traditional LDA in (2) [23]. ®

Similarly, another dimensionality reduction method, i.e.,
LPP can also be analyzed within this framework. LPP first
builds a graph by using neighborhoods, which preserves local
structural information, and then computes the transformation
matrix by general eigen decomposition. In other words, LPP
can be regarded as solving the following problem:

Z ” Wie — Wixi[;A ”2 ij
—1

min
WIXDXTW=I

(28)
where AU = exp(—d|lx;—x; ||2) and D is a diagonal matrix with
the ith diagonal element D;; = Z , Ajj. By simple algebra
formulation, the objective function in (28) can be reformulated
as the matrix form in (19).

Proposition 2: If we compute the weighted matrix A in (13)
by employing Gaussian function in high-dimensional feature
space, that is A = A, LPP can be regarded as a special case
of ADA when S, = XDX.

Proof: When we fix A = A in each iteration, ADA will
obtain the optimal solution by one step. Meanwhile, if S, =
XDX7, the problem (11) is converted to the problem (28) to
solve W. In other words, when S; = XDX” and A = A, the
solution of ADA by one iteration can be regarded as solvmg
the problem in (28), which is the formulation of LPP. |

Proposition 3: If we compute the within-class and between-
class scatter matrices using the sample neighbors (chosen by
kNN) by (5), LLDA in (6) can be regarded as a special case
of ADA in (11) when § — 0.

When the number k of the chosen samples is equal to 7, the
formulation of LLDA in (6) is equivalent to the formulation of

939
4 N
— o
v t - O A = 2 VvV
LDA LPP
kNN kNN L
v A
LLDA LDFA
S J

Fig. 2. Relationship of our ADA and other related methods. Different
dimensionality reduction approaches can be regarded as special cases of ADA.

TABLE 11
DATA SETS DESCRIPTIONS

Dataset  Size Dim  #Class Type

Breast 286 9 2 UCI

Wine 178 13 3 UCI

IRIS 150 4 3 UCI

DNA 3186 150 3 Biodata
Splice 3175 60 2 Biodata
Coil20 1440 1024 20 Object
USPS 9298 256 10 Handwritten
MNIST 70000 784 10 Handwritten

LDA (2). Thus, by the results of Proposition 1, if we compute
the weight matrix A in (13) by the sample neighbors chosen
by kNN, which is the same as LLDA, the formulation in (11)
will be equivalent to the problem (6).

Proposition 4: If we compute the weighted matrix A in (13)
by AV, that is A = A, LFDA can be regarded as a special
case of ADA when S; = S +8p and § — 0.

By Proposition 2, the proof of this result is the same as that
in Proposition 3. We would like to exclude it.

To sum up, the relationships are listed in Fig. 2. As indicated
by the results in the previous propositions, different dimen-
sionality reduction approaches can be regarded as special cases
of our proposed ADA and it can be regarded as a unified
framework in viewing them.

V. EXPERIMENTAL RESULTS
A. Data Description and Experimental setups

In our experiments, eight public data sets with various sta-
tistical characters are collected to present the performance of
different dimensionality reduction methods. These data sets
include three image data sets including Coil20,2 MNIST,3
and USPS,* three UCI machine learning repository data sets,
breast cancer (Breast),” IRIS,® and Wine,’ and two biological

2http://www.cs.columbia.edu/CAVE/research/coil—20.htm1
3 http://yann.lecun.com/exdb/mnist/
4http://Www.cad.zju.edu.cn/home/dengcai/Data/USPS

3 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
6https://archive.ics.uci.edu/ml/datasets/lris

7https ://archive.ics.uci.edu/ml/datasets/Wine
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2-S subspace learned by LDA, LPP, NMMP, SNNDA, LLDA, LFDA, WHMDA, and ADA, for an artificial 8-D data set. It illustrates that ADA can

find a subspace preserving manifold structure with more discriminability. (a) Original data. (b) LDA. (c) LPP. (d) NMMP. (e) SNNDA. (f) LLDA. (g) LFDA.

(h) WHMDA. (i) ADA.

data sets, DNAS and Splice.9 All data sets are standardized
to be zero-mean and normalized by standard deviation. We
summarize the statistics of the data sets in Table II.

We compare the proposed ADA method against the follow-
ing related methods. Unsupervised dimensionality reduction
methods include: 1) principle component analysis (PCA) [39];
2) locality preserving projections (LPP) [26]. Supervised
dimensionality reduction methods consist of: 3) LDA [3], [20];
4) ULDA [21]; 5) OLDA [22], [23]; 6) NMMPs [27];
7) LFDA [11]; 8) LLDA [28]; 9) SNNDA [29]; and
10) WHMDA [10]. For all compared methods except PCA,
we reduce the dimensionality of input data to be ¢ — 1. For
PCA, we reduce the dimensionality of input data such that
90% of data variance is preserved. We implement PCA, LPP,

8https://WWW.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html#dna
9https://Www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#splice

LDA, ULDA, OLDA, LFDA, and SNNDA using the codes
published by the authors.!?

To test the quality of the reduced features and analyze the
effect of classifiers, we choose the classification accuracy as
evaluation metric. Once the projection matrix is obtained by
the dimensionality reduction methods, nearest neighbor clas-
sifier (NNC) method and the linear SVM are used to classify
the unlabeled data points in the projected space. NNC and
linear SVM are the traditional representative of nonlinear and
linear classifier, respectively. In NNC, we use the most widely
used Euclidean distance. We implement SVM by LIBSVM!!
package and implement the “one-against-one” approach for
multiclass cases (for more details see [33], [40]). Following [3]
and [41], the SVM classifier is individually performed on each

]Ohttp://WWW.cad.zju.edu.cn/home/dengcai/Data
llhttp://Www.csie.ntu.edu.tw/ cjlin/libsvm/
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Fig. 4.

Classification accuracy of compared methods on three benchmark data sets by NNC and linear SVM when the dimension of the learned subspace

varies. x-axis is the number of reduced features and y-axis is the classification accuracy. Top: the classification results by NNC method on MNIST, COIL20,

and USPS. Bottom: the classification results by linear SVM classifier on MNIST, COIL20, and USPS.

data set with reduced features, using the linear kernel with
C =1 by all compared methods.

B. Synthetic Data

We explore a toy example to present the performance of our
ADA. We artificially generate a 3-D data set. The data set con-
sists of three classes [shown in Fig. 3(a) by different colors].
In the first two dimensions, the classes are distributed in con-
centric circles, while the third dimensions are Gaussian noise
with large variance. Fig. 3 shows the 2-D subspace learned
by LPP, LDA, LLDA, NMMP, LFDA, SNNDA, WHMDA,
and ADA, respectively. The distributions of synthetic data is
not exact Gaussian distribution, that traditional methods like
LDA fails to solve it. The results illustrate that ADA outper-
forms all other methods, which demonstrate the effectiveness
of our method in learning the discriminative subspace. This is
because ADA choose neighbors and simultaneously measure
the importance of samples by using adaptive method. Thus,
ADA can find more robust and discriminative subspace by
this adaptive approach. Meanwhile, it also verifies that local-
ity and adaptivity are the effective approaches to process the
non-Gaussian data.

C. Comparison Between ADA and Other Algorithms

In this section, we evaluate our method in a typical super-
vised task, i.e., classification by two groups of experiments.

As in [40], we randomly sample 50% data points as the train-
ing set and the remaining are used for testing. The process
is repeated for 50 times and results in 50 different partitions.
First, we use the training data as the input of dimensional-
ity reduction methods and learn the optimal transformation
matrices and new mapped features. Then, the classifiers, i.e.,
NNC and SVM are employed for classification, where the new
subspace features are determined as training samples and the
new projected features of original unlabeled data by learned
transformation matrix are testing examples.

One group is to test the performance with different size
of projected features. With different number of new projected
features, we have conducted experiments on three multiclass
data sets, i.e., MNIST, COIL20, and USPS. As in [3], other
parameters are tuned by cross validation if necessary. The
mean classification accuracy with different numbers of reduced
dimension is shown in Fig. 4. Similar with [42] and [43],
another group of experiments is to further investigate the
impact of classifiers on the performance of the proposed ADA.
Due to the maximal dimension of the projected subspace is
¢ — 1 for LDA and its variants, in this group of experiments,
the dimensionality of mapped features is ranged from 1 to c—1
for LDA, OLDA, ULDA, and WHMDA, while the dimension-
ality of mapped features of other methods is ranged from 1
to d — 1. Meanwhile, six benchmark data sets Breast, DNA,
Splice, IRIS, Wine, and USPS are chosen to test the impact of
dimensionality reduction methods on classifiers. After repeat-
ing 50 times of experiments, we calculate the mean accuracy
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Convergence behavior of ADA on DNA (left) and Wine (right), respectively. Top line is the objective value of ADA. Bottom line is divergence

between tow consecutive W measured by (22). (a) and (g) DNA, § = 0.0001. (b) and (h) DNA, § = 0.001. (c) and (i) DNA, § = 0.01. (d) and (j) Wine,

§ = 0.0001. (e) and (k) Wine, § = 0.001. (f) and (1) Wine, § = 0.01.

and standard deviation values for each methods and classi-
fiers with different dimensions of mapped features. The best
mean classification results and their corresponding dimensions
of mapped features are listed in Table III.

Fig. 4 and Table III show that ADA performs much bet-
ter than other methods in most cases. The results from both
NNC and linear SVM indicate our ADA can learn more
discriminative subspace than other methods very efficiently.
Moreover, the performance of ADA does not depend on the
type of classifiers (nonlinear or linear). Another point should
be highlighted here. No matter the number of training sam-
ples is larger than the dimensionality of the data, like DNA,
Splice, USPS, and MNIST, or the small sample size cases in
the data sets, such as Coil20, Japanese female facial expres-
sions (JAFFE), Yale face (Yale), UMIST, and Caltech, ADA
all performs well. ADA is not only applied for large sample
size problem, but also used for small sample size cases.

D. Convergence Analysis

To validate the efficiency of our proposed algorithm to solve
the problem of ADA, we present the convergence behavior
curves of Algorithm 1 when § = {0.0001, 0.01, 0.1}. Two
kinds of results are provided. The first concerns objective
function value and the other is the divergence between two
consecutive Ws as shown in (22). We show the results on
two data sets DNA and Wine, since the algorithm has similar
convergence behavior on the other data sets. The convergence
curves are displayed in Fig. 5.

As seen from Fig. 5, the objectives of ADA with § =
{0.0001, 0.001, 0.1} are nondecreasing during the iterations,
and they all converge to a fixed value. Additionally, in all
cases, the divergence between two sequential Ws converges to
zero, which indicates that the final results will not be changed
drastically. Furthermore, ADA converges within 15 iterations
on this two data sets for the three § values. Therefore, our
proposed ADA scales well in practice because of the fast
convergence speed.

E. Parameter Determination

There is only one parameter, i.e., §, in our proposed ADA
model. We would like to provide some results of ADA with

- (a) - N kl;): - - ‘(é)l
R

) © ®

Fig. 6. Classification accuracy of NNC on (a) Wine, (b) DNA, (c) Splice,
(d) Coil20, (e) USPS, and (f) MNIST with different § value. x-axis represents
the log-scale value of § and y-axis is the classification accuracy of NNC.

different parameters. Since parameter determination is still an
open problem, we determine § by a heuristic way. More con-
cretely, we determine it by grid search at first and then change
them within certain ranges. The classification accuracy results
of NNC on the testing set with different § on Wine, DNA,
Splice, Coil20, USPS, and MNIST are shown in Fig. 6.

As seen from Fig. 6, parameter determination takes influ-
ence on the performance of ADA. Different values of §
may result in different learned feature subspace. Then, the
classification accuracy results of NNC change.

VI. APPLICATION TO FACE RECOGNITION

As a major open challenge in computer vision and machine
learning, face recognition [7], [8], [44] is the most important
task in a number of application domains, including access con-
trol, visual surveillance system, and duplication of government
issued identity documents (e.g., passport and driver license), to
name a few. Thus face recognition has been extensively stud-
ied over the past two decades. In this section, we will evaluate
ADA in this challenging application scenario.

There are six diverse public face databases collected
to illustrate the performance of different dimensionality
reduction approaches. These data sets include JAFFE,!?

12http://www.kasrl.org/jaffe.html

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on May 01,2020 at 05:14:40 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: DIMENSION REDUCTION FOR NON-GAUSSIAN DATA BY ADA

BEST MEAN CLASSIFICATION RESULTS AND THE CORRESPONDING DIMENSIONALITY OF 11 METHODS ON DATA SETS: BREAST, DNA,
SPLICE, IRIS, WINE, AND USPS. THE BOLD NUMBERS ARE THE HIGHEST IN STATISTICAL VIEW. [MEAN£STD(DIMENSION)]

TABLE III

943

Classifier Methods Breast DNA Splice IRIS Wine USPS
NNC LDA 78.47+7.73(1) 48.92+1.70(2) | 63.76+0.66(1) 94.33+£2.67(2) 61.25+£13.69(2) 83.84+0.47(9)
OLDA 78.47+7.73(1) 46.10+1.87(2) | 63.76+0.66(1) 94.18+2.38(2) 56.75+6.89(2) 83.10+0.54(9)
ULDA 78.47+7.73(1) 50.58+1.97(2) | 63.76+0.66(1) 81.34+5.36(2) 58.25+7.94(2) 83.31+£0.39(9)
PCA 92.58+2.23(3) 87.85+1.25(6) | 88.55+1.00(5) 96.40+1.23(3) 88.86+2.19(7) 94.16+0.39(17)
LPP 89.46+1.46(2) 86.15+1.70(7) | 89.73+1.58(7) 92.81+1.07(3) 86.52+1.66(5) 93.15+0.48(20)
NMMP 90.71£2.95(3) 90.46+1.34(4) | 89.08+2.41(4) 96.73+0.75(3) 90.29+2.43(6) 92.40+2.51(16)
SNNDA 89.93+4.30(4) 90.63+4.13(3) | 88.18+2.29(4) 94.52+0.71(3) 89.50+1.37(6) 92.81+2.46(15)
LLDA 92.77+1.29(2) 89.31£1.98(3) | 91.20+1.77(5) 96.26+0.49(3) 90.99+2.10(5) 93.13+£1.38(19)
LFDA 93.49+1.75(2) 90.31£1.70(4) | 90.81+0.66(4) 96.39+0.67(3) 92.14+3.69(7) 93.97+0.47(18)
WHMDA 95.72+0.68(1) 91.23+0.48(2) | 76.08+0.91(1) 92.78+0.96(2) 66.29+2.39(2) 91.28+0.69(9)
ADA 96.98+0.75(3) 94.58+0.65(5) | 94.07+0.83(4) 97.99+1.07(3) 91.14+1.43(5) 96.51+0.09(15)
SVM LDA 67.67+10.85(1) | 42.10+1.31(2) | 66.98+1.48(1) 93.43+3.35(2) 61.88+14.52(2) 85.07+0.44(9)
OLDA 67.67+10.85(1) | 42.33+1.21(2) | 66.98+1.48(1) 94.48+2.62(2) 57.00+6.98(2) 84.05+£0.61(9)
ULDA 78.20+7.61(1) 41.80+1.66(2) | 67.21x1.75(1) | 77.01+10.69(2) 67.12+£8.67(2) 84.21+0.48(9)
PCA 93.86+0.95(3) 89.35+£2.00(6) | 89.47+0.50(5) 95.62+0.76(3) 90.29+1.89(7) 94.20+0.27(17)
LPP 90.88+1.27(2) 88.54+0.97(7) | 90.05+1.29(7) 94.02+0.40(3) 88.00+1.99(5) 93.80+0.25(20)
NMMP 90.52+1.85(3) 86.42+1.43(4) | 89.81+2.01(4) 96.63+0.62(3) 93.57+2.54(6) 92.45+2.55(16)
SNNDA 89.30+4.15(4) 88.84+3.86(3) | 91.19+2.33(4) 96.16+0.36(3) 92.88+1.84(6) 93.53+2.05(15)
LLDA 94.11+1.93(2) 87.73£1.28(3) | 90.95+1.74(5) 97.53+0.63(3) 92.71+1.01(5) 94.78+2.16(19)
LFDA 95.18+1.85(2) 90.77+£1.31(4) | 92.46+1.48(4) 96.99+0.75(3) 93.43+1.52(7) 94.86+0.44(18)
WHMDA 95.89+0.53 (1) | 93.45+0.32(2) | 81.25+0.59(1) 97.33+0.61(2) 73.14+1.56(2) 91.60+0.68(9)
ADA 97.77+0.60(3) 96.50+0.58(5) | 91.82+0.49(4) 97.93+1.30(3) 96.86+1.05(5) 96.16+0.37(15)
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features under changes of illumination and facial expression. Top line is the results of NNC. Bottom line is the results of linear SVM.

Yale,!3 Caltech,'* CMU pose, illumination, and expression
(CMU-PIE),15 UMIST,!® and Extended Yale face database

1 3http://cvc. yale.edu/projects/yalefaces/yalefaces.html
l4http://Www.vision.caltech.edu/Image_Datasets/faces
Bhttp://vasc.ri.cmu.edu/idb/html/face/

l(’http://WWW.shefﬁeld.ac.uk/eee/research/iel/research/face

Recognition rates of different methods on (a) and (d) JAFFE, (b) and (e) Yale, and (c) and (f) Caltech databases with different numbers of reduced

B (YaleB).!” The brief details of them are presented as
follows.

1) The JAFFE data set contains 217 images of ten Japanese
female models at a resolution of 256x256. It mainly

17http://vision.ucsd.edu/ iskwak/ExtYaleDatabase/ExtYaleB.html
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2)

3)

4)

5)

6)

includes seven expressions, i.e., happiness, sadness, fear,
anger, surprise, disgust, and neutrality. The expressions
were posed without instruction by Japanese participants
in Japan.

Yale data set contains 165 images of 15 persons at a
resolution of 64x64. There exist various lighting con-
ditions, gender, facial expressions and configurations
among these images.

The YaleB [5] contains 16 128 images of 38 human sub-
jects under nine poses and 64 illumination conditions.
The cropped and normalized 192 x 168 face images were
captured under various laboratory-controlled lighting
and pose conditions.

CMU-PIE database contains 41368 source images
of 68 individuals with various conditions (13 poses,
43 illuminations, three expressions, and three talking
situations) for each individual. For our experiment, we
choose a subdatabase from the camera C05, which con-
tains 68 subjects with 49 images per person. It contains
images with varying poses and illumination conditions.
The Sheffield face database (previously UMIST) con-
sists of 564 images of 20 individuals in a resolution of
220x220. Each covering a range of poses from profile
to frontal views. Subjects cover a range of race, sex, and
appearance.

Caltech face data set is collected by Markus Weber
at California Institute of Technology. It contains 450

images of 27 individuals in a resolution of 896x592.
The original images are captured under different light-
ing, expressions, and backgrounds conditions.

Face recognition is very difficult in real world since there
exists varying poses, facial expressions, occlusion and illumi-
nation conditions. Before going into the details, we would like
to introduce the procedure briefly. There are mainly three steps
for our experiments.

1y

2)

3)

We use the well-known feature descriptors to character-
ize each face image. We do not use the raw features
of original faces since the images in this task are com-
plicated and the raw features are not good enough to
describe them. Thus, as in traditional face recognition
methods [6]-[9], we use 640-D dense SIFT feature,
32-D Gabor feature, 512-D GIST feature, and 256-D
LBP feature to represent each face image. For SIFT
feature, we first adopt two-level pyramid model to seg-
ment original faces into five patches and then represent
each patch as 128-D SIFT features. Finally, each face is
described as 1440-D feature vector.

We adopt different dimensionality reduction models to
learn the projection matrix W.

After feature embedding, all face images are represented
by lower-dimensional vectors. As in previous exper-
iments, we randomly split all data sets into training
and testing parts. Finally, NNC and linear SVM are
employed for recognition.
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We compare ADA algorithm with several widely used
related methods: PCA, LPP, LDA, ULDA, OLDA, SNNDA,
NMMP, LFDA, and LLDA. In our experiments, we implement
grid search to estimate the values of §. The parameter § ranges
in [0.0000001, 0.000001, ..., 0.1, 1]. Then fivefold cross vali-
dation is used to decide the optimal parameter. The parameters
in other methods are also tuned by grid search. Finally, we
report the best recognition rate for each algorithm.

A. Experiments With Changes of Illumination and Expression

To verify the performance of our proposed method with
changes of illumination and facial expression, we choose
JAFFE, Yale, and Caltech databases in this experiment. Since
different databases have different scale, we randomly select 9,
7, and 10 face images of each person from JAFFE, Yale, and
Caltech as training set and the remaining face images as test-
ing. We set the number of reduced feature dimension between
1 and ¢ — 1 for all databases. Then we repeat this procedure
for 50 independent runs by NNC and linear SVM classifiers.
The mean recognition rates are presented in Fig. 7.

From Fig. 7, we can see that ADA outperforms other
compared methods with changes of illumination and facial
expression conditions, no matter which kind of classifiers we
have employed. Interestingly, the improvement is more sig-
nificant with the increase of the number of reduced features.
Specially, the improvement of ADA over other methods is
3%—12% under variation of illumination and expression.

B. Experiments With Pose Variation

In this group of experiments, we further study the impact
of pose variation on face recognition of our ADA. We eval-
uate the performance of all compared methods on UMIST,
YaleB, and CMU-PIE databases with pose variation. For each
database, we randomly select 60% samples for training and
the rest for testing. Based on the procedures mentioned above,
every method is tested 50 times. The mean recognition rates
are shown in Fig. 8.

As seen from the numerical results in Fig. 8, our ADA
achieves the highest recognition rates in each case against all
compared methods. The recognition rates of ADA is 5%—9%
higher than others. In other words, ADA is more effective than
other methods for face recognition with pose variation.

In summary, ADA can obtain the most discriminative fea-
tures from different visual features. This is because ADA
combines the sample’s importance measurement and discrim-
inant analysis into the unified framework to enhance the
performance of classification.

VII. CONCLUSION

In this paper, we aim to provide insights into the relationship
between sample’s importance measure and subspace learn-
ing, as well as to facilitate the design of new algorithms for
non-Gaussian data. The framework was proposed to provide
a unified perspective for the understanding this relationship.
Moreover, this framework can be used as a general platform
to develop new algorithms. Meanwhile, we have developed a
new supervised dimensionality reduction method named ADA
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based on this framework. A byproduct is a series of theoretical
analysis and some interesting optimization strategies. Plenty of
experimental results on different kinds of data sets have been
shown that ADA can extract more discriminative subspace fea-
tures. Furthermore, ADA has been applied to face recognition.
One of our future works is the selection of optimal parameter
8, which is an unsolved and open problem in many learning
algorithms. Another future work is to propose more efficient
optimization method to solve our proposed problem in (11).
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