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Abstract

Scene graph generation plays an important role in deep understanding of the

visual scene. Despite the empirical success of traditional methods in many

applications, they still have several challenges in the high computational com-

plexity of dense graph and the inaccurate pruning of sparse graph. To tackle

these problems, we propose a novel deep sparse graph attention network to

mine the rich contextual clues and simultaneously preserve the statistical co-

occurrence knowledge of SGG. Specifically, our Relationship Measurement Net-

work (RelMN) is adapted to first classify all object pairs in dense graph as the

foreground and background categories to filter the false relationships and then

construct a sparse graph efficiently. Meanwhile, we design a novel feature ag-

gregation and update method via graphical message passing to jointly learn the

node and edge features for object recognition and relationship classification in

the graph attention network. Extensive experimental results on the large scale

visual genome dataset demonstrate our proposed method outperforms several

state-of-the-art approaches.
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1. Introduction

Understanding the visual scene is a critical task in computer vision. Scene

graph, a structured representation of an image [1], provides a deeper understand-

ing of images than fundamental detection [2] and segmentation [3] by analyzing

the semantic summaries of objects and their relationships. As shown in Figure5

1, the scene graph displays the location and category of objects and exhibits

the relationships between the objects, such as “boy-on-surfboard”. Recently,

inferring scene graph has attracted many researchers’ attention [4, 5, 6, 7, 8],

as it extracts the rich semantic information contained in the object interactions

[9]. Such richer semantic understanding in scene graph can not only provide10

context clues for fundamental recognition tasks, but also have broad prospects

in various high-level vision applications. For example, it is the key to improve

the image retrieval [1] and the natural language based image tasks [10]. Besides,

it provides the valuable information for other applications, such as VQA [11],

image caption [12, 13] and image generation [8] etc.15
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Figure 1: An example of a scene graph, the green boxes represent the object nodes, and the

orange ellipses represent the relationships between the objects.

Despite the empirical success of scene graph generation methods in many

practical applications, it still remains the challenging to accurately extract a

scene graph from an image by reasoning about the complex dependencies be-

tween all components[5]. There are many methods [14, 15, 16, 17] already

proposed to generate the scene graph in literature. These methods are divided20

into two categories according to the number of candidate relationships: dense
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(a) image (b) dense graph (c) general sparse graph (d) our sparse graph (e) ground truth

Image Dense graph Our model Ground truth

Execution time 0.377s/image 0.180s/image

(a) image (b) dense graph (c) general sparse graph (d) our sparse graph (e) ground truth

Figure 2: An illustration of dense graph and sparse graph. Given an image (a), all object

pairs have edges in dense graph (b), and the general sparse graph (c) imprecisely prunes some

edges. Our model generates a more reasonable sparse graph (d), and the ground truth is (e).

graph and sparse graph. Constructing dense graph is popular with scene graph

generation [16], in which all object pairs have candidate relations and there

are n(n − 1) connections for n nodes. With the dense graph, some researchers

usually use CRF [15], BiLSTM [18], or GRU units [6] to build encoder-decoder25

model for message passing and context learning. Other researchers construct

sparse graphs by pruning dense graphs [19] or constructing dynamic tree struc-

tures [16], which effectively captures contextual information and expresses the

inherent parallel or hierarchical relationships. The graphical message passing

with sparse graph often achieves by GCN or GAT [19]. Besides, Zellers et al.30

[18] found strong structural regularities in the visual scene, which is essential in

the scene graph. The statistical dependence is formally expressed in the form of

structured graphs in [20], and they show that the statistical correlation can be

represented by a structured knowledge graph, which standardizes the semantic

prediction space and deals with the uneven data.35

However, there are still some shortcomings in the previous proposed methods

that need to be improved. As shown in Figure 2(b), the dense graph is useful in

modeling contextual clues, but might increase the computational complexity of

the model and generate lots of redundancies for object features because many

object pairs in image are unlikely to have attractive relationships [19]. On the40

contrary, partial reliable connections exist in the sparse graph, which improves

the efficiency of message passing. An embarrassing fact is that current sparse

graph models are unsatisfactory since they are unable to generate sufficiently

accurate candidate edges for relationships classification, just like Figure 2(c).
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On one hand, computing the distances and scores for object pairs is flawed.45

Previous works merely use the object categories features or appearance features

to calculate the distances, which is insufficient. On the other hand, they often

select top K object pairs to construct a sparse graph and the hyperparameter K

is manual which is unsuitable for different scenes. Consequentially, the noisy re-

lationship proposals may damage the scene graphs and their downstream tasks.50

To tackle these problems, we design a Relationship Measurement Network

(RelMN) for generating sounder relationship proposals and more reasonable

sparse graph. Different with general relationship proposal networks, our RelMN

is aimed to distinguish whether the relationships between object pairs are fore-

ground (annotated edges) or background (not annotated edges) rather than55

computing the distances or correlation for object pairs, such as RePN [19], Rel-

PN [4] and VCTree [16]. To make up for the shortcomings of single-species

features, the RelMN takes multiple features as the inputs for the binary clas-

sification of relationships, including appearance features, categories features,

spatial features of objects and the prior statistical features. Meanwhile, the60

network automatically selects all K foreground edges from the classifier outputs

and some background edges to construct the sparse graph without any hyper-

parameter, as shown in Figure 2(d). Specially, top 3K background edges with

high foreground scores from the softmax outputs are chosen in our model.

In this paper, we propose a novel unified deep sparse graph attention network65

for scene graph generation. Our model is mainly committed to achieving efficient

message passing and mining rich contextual clues by constructing a more reason-

able sparse knowledge graph. In the data preprocessing, we calculate the prior

statistical probability of object categories and object categories-relationships.

The model generates a set of objects proposal based on Fast R-CNN detector70

[21] in bounding box module. In sparse graph module, the RelMN first classi-

fies the relationships into foreground and background for n(n− 1) edges. Then

it screens all edges with significant relationships and partial background edges

to build the directed sparse graph automatically. In graphical message passing

module, the Graph Attention network (GAT) with multi-head attention achieves75
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a new way of features aggregations and updates on the sparse graph. In previ-

ous models, relationship features are rough because they are usually determined

by object features. With our graphical message passing module, object features

and relationships features are learned synchronously. The prior probability will

be embedded with the object features to realize the co-occurrence structure80

modeling and to form the sparse knowledge graph. Extensive experiments on

the large scale visual genome (VG) dataset [22] demonstrate the performance

of our model. Compared with the current state-of-the-art methods KERN [20],

VCTree [16] and GPS-Net [23], the proposed method achieves absolute gains

of 2.60, 1.60, and 0.82 on the average of recall@50 and recall@100 measures of85

three common tasks. We also perform extensive model ablation and analyze the

influence of various factors on model performance.

Our contributions are summarized as follows:

(1) We propose a novel feature interaction and knowledge learning framework

on sparse graph for scene graph generation. It incorporates the sparse graph90

construction, graphical message passing, and learning of statistical knowledge.

(2) The Relationship Measurement Network (RelMN) classifies all edges in

dense graph into foreground and background and automatically construct a

reliable sparse graph to reduce the computational complexity and improve the

efficiency of feature interaction.95

(3) We design a new feature aggregation and update method between nodes

and edges based on the graph attention network, which jointly extracts the

object features and relationship features. Besides, the attention weights are

learned from subject node features, object node features, and the edge features

with multiple subspaces to mine rich contextual clues.100

(4) A sparse knowledge graph are explicitly implemented with the co-occurrence

structure modeling. We fully explore the role of prior statistical probability,

which has been successfully applied to the relationship binary classification and

graphical message passing.

The remainder of this paper is organized in the following manner. Section 2105

briefly overviews the related works. Then we introduce the proposed methodol-
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ogy in Section 3. The experimental setting, results, and discussions are reported

in Section 4. Finally, we draw conclusions in Section 5.

2. Related works

Relationship detection and scene graph generation. Visual relation-110

ship detection detects semantic objects in images and infers the relationship

between object pairs. In the past decade, many scholars have done a lot of

research on visual relationship detection [24, 25]. Early studies focused on spe-

cific relational phrases [26] or visual phrases to improve other tasks [27]. Recent

researches pay more attention to general visual relationship detection [28, 29],115

such as geometric relationships, affiliation, and action. A scene graph is a struc-

tured representation of visual scene based on relationship detection. One of the

most popular ways to represent scene understanding is text description (such as

image caption [30]). The text description is usually limited by ambiguity and

lack of expressiveness. In contrast, the scene graph provides information about120

the locations of objects in the scene and the relationships between objects. In

recent years, many scene graph analysis methods have been proposed based on

a same pipeline. The pipeline is that these models first detect entities by using

off-the-shelf detectors [31, 32] or fine-tuned detectors on relationship datasets

[33, 4]. Then they predict predicates using the recommended method. Our125

model also follows this pipeline.

Message passing with dense graph and sparse graph. The idea of

improving scene understanding with context has a long history in computer

vision [34, 35]. Message passing is a way to integrate context information in

scene graph. Lin et al. [23] proposed a direction-aware message passing module130

to extract the edge direction information. In [6], Xu et al. decomposed mes-

sage passing into two sub-graphs for objects and relationships, and performed

message passing. Similarly, in [28], they proposed two messaging strategies

(parallel and sequential) for spreading information between objects and relation-

ships. However, their message passing strategies are flawed. The indiscriminate135
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message passing between all objects, which forms the dense graph, might make

features learning sloppy, and exponentially increase the computational complex-

ity. Some scholars use heuristic methods such as random sampling to solve this

problem [15, 36, 37]. Tang et al. [16] recommended to compose the dynamic

tree structure to put the objects into the visual context. To prune the mean-140

ingless relationship edges, the trainable Relation Proposal Network (RePN) is

introduced in [19], which is similar to the recently proposed Relationship Pro-

posal Network (Rel-PN) [4]. Different with RePN and Rel-PN, the RelMN first

integrates the multiple features to judge the relationships between object pairs.

Then, a sparse graph is automatically constructed for each image according to145

the binary classification.

Statistical dependence in scene graph generation. Many methods

have focused on investigating the importance of the regularities of objects and

relationships in scene graphs generation. Visual scene understanding usually

relies on statistical patterns [38, 39] and spatial layout [40] of objects. In [18],150

Zeller et al. analyzed the statistical dependences of object pairs and relation-

ships on the VG dataset, and concluded that they could provide powerful reg-

ularization for relationship prediction. They came up with a strong baseline.

And this baseline directly used frequency priors to predict relationships and inte-

grated the regularity into the graph structure, surpassing most previous studies.155

In [15], it is pointed out that the entropy of the prior probability distribution

P (R) on the VG dataset is 2.88, but the entropy of P (R|S,O) is 1.21 given the

conditional probability of object pairs (subject node and object node). This dif-

ference demonstrates the importance of statistical dependence between objects

and relationships. Works [18, 15] also noted statistical dependences, and they160

designed deep models to mine the information through message passing implic-

itly. The model of [20] formally expressed statistical co-occurrence knowledge

and incorporated the graph into deep propagation network to promote scene

graph generation. We also take the prior statistical probability as part of learn-

ing statistical occurrence knowledge to generate the sparse knowledge graph,165

rather than the dense knowledge graph.
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Figure 3: A brief pipeline of our model. It include three modules: Bounding box module adopt

the Faster RCNN to generate object proposals; Sparse graph module divides all edges of object

pairs into foreground relationships and background by the binary classifier and generates

the reasonable sparse graph. The key of this module is our novel relationship measurement

network (RelMN); Graphical message passing module includes a new feature aggregation and

update way between nodes and edges based on the GAT to achieve effective contextual learning

and recognize the object categories and their relationships. The statistical probabilities are

embedding into the sparse graph module and graphical message passing module to generate

the sparse knowledge graph and learn the statistical co-occurrence modeling.

3. Method

As illustrated in Figure 3, we summarize a brief pipeline of our model. We

first show the model overview and problem formulation in Section 3.1. Then our

model can be decomposed the following three steps. (a) The object bounding170

boxes in images are extracted through the off-the-shelf Faster R-CNN in Section

3.2. (b) In Section 3.3, a novel relationship measurement network divides all

edges of object pairs into foreground relationships and background by the binary

classifier, and generates a reasonable sparse graph for each image. (c) In Section

3.4, we show a new feature aggregation and update way based on multi-head175

graph attention network for efficient message passing and relationship classifi-

cation on the sparse graph. It is worth mentioning that to better play the role

of statistical dependence, we incorporate the prior statistical probability into

Section 3.3 and Section 3.4 respectively, and successfully construct the sparse

knowledge graph.180
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3.1. Model overview and problem formulation

In this work, a structured representation of an image has generated for the

scene graph, which mainly consists of object locations, object categories, and

the relationships between them. Given a scene graph G, it can be represented

as a set of triples G = {B,O,R}:185

B = {b1, b2, ..., bn} is the region candidate set. For the i-th candidate region,

bi ∈ R4 expresses coordinates location information.

O = {o1, o2, ..., on} represents the object set. The candidate region bi has

a corresponding category label oi ∈ C, where C represents the collection of all

object categories.190

R = {r1, r2, ..., rm} is the binary relationship set. The relationship ri is a

triple, including: the subject node (bi, oi) ∈ B × O, the object node (bj , oj) ∈

B × O, and the relationship between them ri→j ∈ R. R represents the all

relationships set.

Given an image I, the model decomposes the probability of a graph G into

three factors:

P (G|I) = P (B|I)P (E|I,B)P (R,O|I,B,E), (1)

where E ⊆

 B

2

 and

 B

2

 represents the edges connected by any two195

object bounding boxes.

Bounding box module P (B|I) is the basis of the scene graph, which extracts

the proposal candidates from the image and provides the location information.

Similar to the previous methods, we use Fast R-CNN, a widely used object

detection model, to obtain these bounding boxes which covers most of the critical200

objects.

Sparse graph module P (E|I,B) selects the object pairs with potential rela-

tionships to construct the sparse graph. Our RelMN is different from traditional

methods from the following two aspects. First, the main target of RelMN is to

divide all edges into two categories: foreground and background rather than205

to compute the distances between objects. Second, all foreground edges and

9



partial background edges are automatically selected to build the sparse graph

in RelMN.

Graphical message passing module P (R,O|I,B,E) achieves effective contex-

tual learning and recognizes the object categories and their relationships. First,210

the fused features form new node features and edge features on the graph. Then,

the messages on the graph are efficiently transmitted and integrated through

the graph attention network with a new feature aggregation and update way.

3.2. Extraction of object bounding boxes

In the bounding box module, the model generates a set of candidate regions.215

Similar to other studies [18, 20], we use the Fast R-CNN framework as the un-

derlying detector to automatically extract object regions B = {b1, b2, ..., bn}.

For region bi, it includes the location information represented by bounding box

bi ∈ R4, the object appearance features f i
appear, and the object category prob-

ability pi.220

3.3. A novel relationship measurement network

We design a novel relationship measurement network (RelMN) to identify

edges of all object pairs into foreground or background and construct sparse

graph. Compared to dense graphs, message passing on sparse graphs can signif-

icantly reduce the computational complexity, making information transfer more225

accurate and effective. RelMN consists of three components: (1) extraction of

multiple features, (2) binary classification of foreground and background, and

(3) generation of the sparse graph. Figure 4 shows the process of constructing

sparse graph with our RelMN.

Extraction of multiple features. In terms of experience, two aspects are230

utilized to judge the meaningful relationship between object pairs. One aspect is

the spatial distances. Compared with the distant object pairs, the closer object

pairs are more likely to have meaningful relationships. Another aspect is the

object categories. It could happen that meaningful relationships do not exist

between some object categories, even if they are usually packed together, e.g.235
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Figure 4: Binary classification for object pairs in RelMN. First, we transfer the location

coordinates and category probability distributions of the objects into spatial features and

category features. The category features are equipped with the prior statistical features.

Then the union spatial features, category features and appearance features are concatenated

to generate the logits features. Finally, the output probabilities are computed by the sigmoid

classifier.

hats and glasses. On the contrary, though the distance between some categories

may be a little larger, they are more likely to have a meaningful relationship

(such as “person-play-football”). Therefore, the RelMN will mainly rely on the

objects category features, spatial features, and appearance features to determine

the type of edges for all object pairs.240

We transform the location coordinates and category probability distributions

of the objects into spatial features and category features. For spatial features,

the location coordinates of M×4 dimensions are expanded to M×16 dimensions

through duplication and concatenation, where M is the number of objects. Then

it is transformed into M × 128 dimensional spatial feature vectors: f i
spatial =245

MLP ([bi, bi]), where MLP is a multi-layer perceptron, [·, ·] is a concatenation.

There are 151 categories in the VG dataset, and the object generates a

probability distribution of 151-dimensional vector. Similarly, we transform the

category probability distribution of the object into the category features of

11



M × 128: f i
class = MLP (pi).250

Binary classification of foreground and background. For an edge of

two object regions bi and bj (i 6= j), the RelMN classifies the edge based on the

appearance features, spatial features, and category features of bi and bj . The

union appearance features f ij
appear and the union spatial features f ij

spatial of bi

and bj are computed as:f ij
appear = MLP ([f i

appear,f
j
appear]),

f ij
spatial = MLP ([f i

spatial,f
j
spatial]).

(2)

To learn the statistical co-occurrence knowledge for categories, we introduce

the prior statistical probabilities of object categories when calculating the union

category features. The statistical information plays a vital role in associating

objects and predicting the object labels. The prior probability matrix of object

categories is Mst ∈ RC×C , where C is the number of all categories. For two

different categories of s and t, the probability that there exist at least two objects

belonging to s and t in an image can be computed as:

mst =
Num(t ∩ s)
Num(s)

. (3)

The model learns the statistical co-occurrence knowledge among object cat-

egories based on the prior probability matrix and the union category features.

The union category features f ij
class of bi and bj can be formulated as:

f ij
class = MLP

([ C∑
t=1

pismstf
i
class,

C∑
s=1

pjtmtsf
j
class

])
, (4)

where pis represents the probability of the i-th node belonging to category s.

The logits of edge f ij
logits and the probabilities peij can be computed as:f ij

logits = MLP ([f ij
appear,f

ij
spatial,f

ij
class]),

peij = σ(f ij
logits),

(5)

where σ is the sigmoid function. Multiple features provide more supports for

edges binary classification than single-species features.
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Generation of the sparse graph. With the outputs of the classifier, the

RelMN first select all K object pairs whose edges are predicted as the fore-255

ground. Note that K is not a hyperparameter because it is directly determined

by the classifier. In addition, the RelMN still automatically select top 3K back-

ground edges with high foreground probabilities to construct the sparse graph

with the K foreground edges. The background edges enhance the robustness of

relationship classification and reduce the risk of filtering out ground truth rela-260

tionships. Finally, we can get a sparse graph containing n nodes and 4K edges

for an image. In general, the RelMN generates sounder relationship proposals

and more reasonable sparse graph than previous works.

3.4. Graphical message passing on graph attention network

To learn contextual clues through the sparse graph, we propose a new fea-265

ture aggregation and update way based on multi-head graph attention network.

The relationship features in previous methods are usually determined by object

features. After message passing, they only extracts the object features that are

used for objects recognition. The relationship features are simply calculated by

the concatenation of object features, which is rough and cannot well express270

the difference between a node as a subject or object. In our graphical mes-

sage passing module, the object features and relationships features are learned

synchronously by nodes and edges on sparse graph. Specifically, the message

passing on our GAT is based on directed sparse graph, which explicitly indicates

the subject nodes and object nodes. The inherent weight from prior statistical275

probability and the attention weights of nodes and edges on our GAT are ben-

eficial to extract object features and relationship features. This new method

mainly includes: (a) the generation of node and edge features with knowledge

embedding, (b) the weights learning of the node features and the edge features

based on the inherent weight and attention, (c) learning different distribution280

from multiple subspaces, and (d) objects and relationships classification based

on the node features and edges features.

Generation of node features and edge features with knowledge em-
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bedding. The model first aggregates appearance features, spatial features, and

category features and compresses them by an encoder-decoder to obtain fusion285

object features f i
fusion. Then we assign node features and edge features to the

corresponding nodes and edges in the graph. The node features h0
vi are initial-

ized by using the fused object features, i.e. h0
vi = f i

fusion. For the initialization

of edge features h0
eij , the features of the subject node and object node will be

concatenated sequentially, and then dimensionally compressed through the fully290

connected layer, i.e. h0
eij = L([f i

fusion,f
j
fusion]), where L is LeakyRelu layer.

Next, the prior statistical probabilities of object categories-relationships em-

bed with the initialized node features and edge features. Specifically, in the prior

probability matrix of categories-relationships, the probability mstr of all possible

relationships given the node s and t is:

mstr =
Num(r ∩ (s→ t))

Num(s→ t)
, (6)

where s → t represents the subject node s and the object node t. The prior

probability matrix is Mstr ∈ RC×C×R by calculating the probabilities for all

categories-relationships, where R is the number of all relationships. Therefore,

the node features hvi and edge features heij can be computed as:
hvi =

R∑
r=1

C∑
s=1

C∑
t=1

pismstrh
0
vi ,

heij =

R∑
r=1

C∑
s=1

C∑
t=1

pismstrpjth
0
eij ,

(7)

where pis represents the probability of the i-th node belonging to category s,

and mstr is the probability of the subject node of category s and the object

node of category t having a relationship r.

As another part of the sparse knowledge graph, the prior probability mstr295

and category probability pi form the inherent weight of nodes and edges in

(7). The inherent weight of nodes and edges reflects the category-relationships

activity of between the nodes vi and other nodes, and between the edges eij and

other edges in the VG dataset, respectively.
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Figure 5: The aggregation and update for node features and edge features. The inherent

weight embed with the fused features to acquire the nodes features and the edges features.

Then the nodes aggregate the features of adjacent nodes and connected edges, and the edges

aggregate the subject node features and object node features with the attention weights from

multiple subspaces.

The weights learning of the subject node features, object node

features, and the edge features. Before describing our model, we briefly

review the graph attention network (GAT) [41]. For the node i in the graph,

given the features hi and the expression of its neighbor node {hj |j ∈ No(i)} ,

where No(i) represents the neighbor node of i, the graph attention weight αij

can be calculated as:

αij =
exp

(
L(~aT [Whi||Whj ])

)∑
k∈No(i) exp (L(~aT [Whi||Whk]))

, (8)

where ~a is the weight vector of a layer feed-forward neural network, and W

is the learning weight parameter. Then, the normalized attention coefficients

between different nodes are calculated, which predict the output features h′i:

h′i = σ
( ∑

j∈No(i)

αijWhj

)
. (9)

In our model, the node needs to aggregate the features of adjacent nodes300

and connected edges. Simultaneously, the edge features also are aggregated and
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updated based on the subject node features and object node features. Therefore,

we need to calculate the attention weight between nodes, and between nodes

and edges.

For node message aggregation, the attention weight αvivj between nodes is

calculated as follows:

αvivj =
F (Whvi ||Whvj )∑

k∈No(i)

F (Whvi ||Whvk) +
∑

l∈Ne(i)

F (Whvi ||Wheil)
, (10)

where F (x) = exp(LeakyReLU(~aT (x))), Ne(i) represents the set of edges con-

nected to node i. The attention weight αvieij between nodes and edges is cal-

culated as:

αvieij =
F (Whvi ||Wheij ])∑

k∈No(i)

F (Whvi ||Whvk ]) +
∑

l∈Ne(i)

F (Whvi ||Wheil ])
. (11)

For the aggregation of edge messages, the attention weight αel is:

αel =
F ([Whel ||Whvi ])∑

j∈No(l) F ([Whel ||Whvj ])
, (12)

where No(l) represents the subject node and object node connected to edge l.305

From Eq. (7), (10), (11), and (12), we can know that different from general

GAT, the aggregate weight of node features or edge features have be guided by

attention and inherent weight in our model.

Learning different distribution from multiple subspaces. The model

merges the aggregated features with the previous hidden state by multi-head

attention, each of which represents a subspace. The new node features h̃vi and

edge features h̃eij are updated through the non-linear activation function:
h̃vi = σ

 1

Z

Z∑
z=1

(
∑

k∈No(i)

αz
vivk

W zhvk +
∑

l∈Ne(i)

αz
vieil

W zheil)

 ,

h̃eij = σ

(
1

Z

Z∑
z=1

(αz
eijheij + αz

eiW
zhvi

+ αz
ejW

zhvj )

)
,

(13)

where Z represents the number of subspaces, and z represents the z-th attention.

It should be noted that we have added an edge for each node pointed to itself, i.e.310
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i ∈ No(i). The node features are updated according to the hidden node features,

adjacent nodes features, and connecting edges features. The edge features are

updated according to the hidden edge features, subject node features, and object

node features. Figure 5 shows the aggregation and update process of node

features and edge features.315

Under the guidance of the prior probability matrix of categories-relationships

and the multi-head attention mechanism, the model can focus on learning sta-

tistical co-occurrence knowledge and contextual cues in the large-scale dataset.

The model classifies the objects and relationships by the output features. Specif-

ically, the object categories are classified according to the output node features,320

and the relationships are classified by the output edge features.

4. Experiments and Results

In this section, we first describe experimental settings in detail in section

4.1. Then the experimental results and comparison with other latest studies are

shown in Section 4.2. Finally, we present ablative study and qualitative results325

in Section 4.3 and Section 4.4, respectively.

4.1. Experimental settings

Dataset: The VG dataset is the validated dataset for our proposed model.

There are several inconsistencies for dividing and evaluating the VG dataset in

the different scene graph generation branches [36, 6, 4]. In our experiment, we330

employ the most commonly used preprocessing and data partitioning models [6].

The original VG dataset contains 108077 images. After preprocessing, an image

contains 25 different objects and 22 relationships on average. As in [18, 6, 20, 19],

we select the most frequent 150 object categories and 1 background category,

and 50 predicate relationships as the evaluation criteria. Within the range of335

these categories and predicate relationships, an image contains 11.5 objects and

6.2 relationships on average. 70% of the images are selected as the training set

and the other 30% images are testing set.
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Model training. We trained our model in the PyTorch framework. To

be consistent with the previous work [18, 20], we adopt two-stage training, in340

which we first train the object detector, and then conduct the joint training of

the entire scene graph generation model. In the object detection, the Fast R-

CNN detector generates a series of candidate regions. The detector is based on

VGG-16 [42] as the backbone, and pre-trained and initialized by the ImageNet

dataset[43]. The input image size is 592×592 and the anchor sizes and dimension345

ratios are similar to Yolo-9000 [44].

Task settings. The goal of scene graph generation is to predict a series of

subject-relationship-object triples. We use the following three standard mea-

sures to evaluate the model of scene graph generation:

Predicate classification (PredCls): Given ground truth of object category350

and bounding box, the model predicts the relationships of object pairs.

Scene graph classification (SGCls): Given ground truth of object bounding

box, the model predicts the object categories and relationships of object pairs.

Scene graph generation (SGGen): Model needs to detect and identify the

objects in the image, and predict the relationships for all object pairs.355

Evaluation metrics. We mainly use Recall@K as the primary performance

measure, which is the proportion of true instances correctly recalled in the Top

K predictions. In [20, 16], they propose to use the mean recall@K (mR@K)

to evaluate the performance of all relationships more comprehensively. This

metric calculates R@K for each relationship, and then averages the R@K of all360

relationships to obtain mR@K. Therefore, we adopt the Recall@K and mean

Recall@K measures to evaluate our model in experiments, specifically includ-

ing Recall@20, Recall@50, Recall@100 and mR@50, mR@100. Besides, some

previous works [6] calculate R@K under the constraint that only a relationship

is obtained for a given object pair. Some other works [45] omit this constraint365

so that multiple relationships can be obtained for an object pair, resulting in

higher scores. In this work, we give a comprehensive comparison of R@K and

mR@K with and without constraints, respectively.
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Table 1: Comparison of the R@20, R@50 and R@100 in percentage with and without con-

straint on the three tasks of the VG dataset.

SGGen SGCls PredCls

Method R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

Constraint

VRD [14] 0.30 0.50 11.8 14.1 27.9 35.0 14.93

Graph RCNN [19] 11.4 13.7 29.6 31.6 54.2 59.1 33.27

IMP+ [6] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 39.30

Freq+O [18] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 40.72

SMN [18] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 43.68

KERN [20] 21.7 27.1 29.8 33.8 36.7 37.4 59.2 65.8 67.6 44.07

VCTree [16] 22.0 27.9 31.1 35.2 38.1 38.8 60.1 66.4 68.1 45.07

GPS-Net [23] 22.6 28.4 31.7 36.1 39.2 40.1 60.7 66.9 68.8 45.85

Ours 23.2 28.8 32.9 37.5 40.2 41.1 62.6 67.7 69.3 46.67

No constraint

AE [45] 15.5 18.8 35.7 38.4 82.0 86.4 46.13

IMP+ [6] 22.0 27.4 43.4 47.2 75.2 83.6 49.80

Freq+O [18] 28.6 34.4 39.0 43.4 75.7 82.9 50.67

SMN [18] 30.5 35.8 44.5 47.7 81.1 88.3 54.65

KERN [20] 30.9 35.8 45.9 49.0 81.9 88.9 55.40

Ours 31.6 37.0 49.4 52.8 83.4 89.8 57.33

4.2. The results of the experiments

According to the data preprocessing and data division methods in Section370

4.1, we evaluate and compare the proposed model on the VG dataset. In this

section, we compare the results with other start-of-the-art methods: Visual

Relationship Detection(VRD) model [14], Graph RCNN model [19], improved

version of Iterative Message Passing method (IMP+) [6], associative embedding

model (AE) [45], the best frequency baseline (Freq+O/Freq), Stacked Motif375

Networks with LeftRight (SMN-L/SMN) in [18], and currently the start-of-

the-art models Knowledge-Embedded Routing Network (KERN) [20], visual

context tree model (VCTree) [16], and GPS-Net [23]. For a fair comparison,

the mean value in the last column is calculated for R@50 and R@100. The best

performance is highlighted in bold face.380

Table 1 shows the performance of our model and other start-of-the-art mod-

els on the Recall@20, Recall@50, and Recall@100 measurements. The VRD,

Graph RCNN, and IMP+ methods in Table 1 take language models or global

context to extract the relationship features between objects. Still, their per-

formance on the VG dataset are worse than the Freq baseline method. The385

Freq baseline method directly predicts the most frequent relationship of object
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Table 2: Comparison of the mR@50 and mR@100 in percentage with and without constraint

on the three tasks of the VG dataset.

SGGen SGCls PredCls

Method mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Mean

Constraint

IMP [6] 0.6 0.9 3.1 3.8 6.1 6.8 3.75

IMP+ [6] 3.8 4.8 5.8 6.0 9.8 10.5 6.78

SMN-L [18] 5.3 6.1 7.1 7.6 13.3 14.4 8.97

KERN [20] 6.4 7.3 9.4 10.0 17.7 19.2 11.67

VCTree [16] 6.9 8.0 10.1 10.8 17.9 19.4 12.18

Ours 7.8 8.9 11.8 12.3 21.0 22.3 14.02

No constraint

AE [45] 1.6 2.5 6.0 7.8 15.1 19.5 8.75

IMP+ [6] 5.4 8.0 12.1 16.9 20.3 28.9 15.27

Freq [18] 5.9 8.9 13.5 19.6 24.8 37.3 18.33

SMN [18] 9.3 12.9 15.4 20.6 27.5 37.9 20.60

KERN [20] 11.7 16.0 19.8 26.2 36.3 49.0 26.50

Ours 14.3 18.5 24.0 30.5 42.5 54.2 30.67

pairs with given category labels, which shows that the statistical dependence

between object categories and their relationships also occupies an important

role in object relationship detection and scene graph generation tasks.

The most similar to our model pipeline is the Graph RCNN model, but390

our model gets 13.40% improvement than the Graph RCNN model on the VG

dataset. Compared with them, the proposed model not only obtains more accu-

rate relationship recommendations and achieves better graphical message pass-

ing, but also integrates the prior statistical probabilities and learn the statistical

co-occurrence knowledge.395

The SMN model, KERN model, VCTree model and the GPS-Net are the

best methods in the existing research on the VG dataset. The SMN model

implicitly captures these statistical correlations by encoding the global context.

Under the evaluation settings with and without constraints, its mean score is

43.68% and 54.65%, respectively. The KERN model explicitly merges statis-400

tical correlations through prior statistical probabilities, and its mean score is

44.07% and 55.40% with and without constraints, respectively. However, both

the SMN model and the KERN model apply dense graphs to transfer messages

between objects. The VCTree model constructs a dynamic tree structure that
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the VG dataset [20].
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(c) The relation between mR@50 improvement

and sample proportion.
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(d) mR@50 of our method and KERN on the

SGGen with three groups.

Figure 6: The comprehensive analysis and comparison of our model and KERN from the

perspective of relationships distribution. Our model achieves better performance on the scene

graph generation (SGGen) task, and both the frequent relationships and the relationships

with fewer samples get the improvement.

allows more content or task-specific messages to be passed between objects. Its405

mean score is 45.07% under constraints. In our model, we select the object

pairs with significant relationships and build the sparse graph by RelMN. On

the sparse graph, the model performs more accurate and efficient message pass-

ing, and fuses contextual cues based on the GAT with new feature aggregation

and update way. Therefore, our model can be improved by 2.99% and 2.60%,410

respectively compared with SMN model and KERN model with constraints,

and 2.68% and 1.93% higher without constraints. Compared with the VCTree

model and GPS-Net, it is 1.60% and 0.82% higher with constraints.

For more comprehensive comparison with existing methods, we also present

mR@50 and mR@100 for three tasks in Table 2. Our method achieves the best415

results on these tasks. Specifically, the mean score is 14.02% with constraints,

which is 5.05%, 2.35%, and 1.84% higher than SMN model, KERN model, and
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VCTree model, respectively. Without constraints, the mean score is 30.67%,

which is 10.07% and 4.17% higher than the SMN model and the KERN model.

The significant improvement of mean Recall@K shows that the proposed model420

can alleviate the problem of uneven relationships distribution. Figure 6 shows

the performance comparison of our model and KERN model for mR@50 without

constraints on the scene graph generation on the VG dataset. Figure 6(a) shows

the mR@50 without constraints of our method and the KERN on the SGGen

task, and Figure 6(b) presents that the distribution of different relationships on425

the VG dataset is extremely uneven. We find that our model achieves better

performance on 47 of the 50 relationships, and both the frequent relationships

and the relationships with fewer samples get evident improvement from Figure

6(c) and Figure 6(d).

4.3. Ablation study430

In this section, to prove the effectiveness of all modules, we analyze the im-

pact of the sub-module on the final performance through ablation study. The

core modules mainly include the statistical co-occurrence knowledge learning

by spares knowledge graph (indicated by “SCK” in Table 3), relationship mea-

surement network (RelMN), and GAT with new feature aggregation and update435

way (indicated by “new-GAT” in Table 3). We design some comparative exper-

iments to test the effect of three modules with different branches on the model

performance. These experiments are performed on the VG dataset, and the

results are shown in Table 3. The three leftmost columns in Table 3 indicate

whether the model is equipped with SCK, RelMN, new-GAT or other varieties.440

The purpose is to explore the impact of: (1) statistical co-occurrence knowledge.

The symbol ‘×’ in SCK means no prior statistical probabilities in our model;

(2) the sparse graph. The ‘R4K’ means that the sparse graph is consists of

random 4K edges from n(n− 1) object pairs; The ‘K(F)’ means that the sparse

graph is consists of all K foreground edges ; The ‘K(F)+R3K(B)’ means all K445

foreground edges and random 3K background edges; The ‘K(F)+T3K(B)’ is

adopted by our RelMN, which means all K foreground edges and Top 3K back-

22



Table 3: The results of ablation studies on our model on three different tasks.

SGGen SGCls PredCls

SCK RelMN new-GAT R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

× X X 19.9 25.7 28.9 32.2 35.9 37.0 58.2 64.4 65.5 42.90

X R4K X 17.5 21.7 24.8 27.4 30.5 32.2 50.8 58.8 60.0 38.10

X K(F) X 22.0 27.5 31.1 36.9 38.9 39.6 61.0 66.5 68.1 45.28

X K(F)+R3K(B) X 23.0 28.3 32.3 37.2 40.0 40.7 62.4 67.6 69.0 46.32

X K(F)+T3K(B) X 23.2 28.8 32.9 37.5 40.2 41.1 62.6 67.7 69.3 46.67

X X GCN 21.9 26.7 30.0 34.5 37.5 38.3 59.4 65.8 66.7 44.17

X X GAT 22.6 27.5 31.4 35.8 38.0 39.0 60.7 67.0 67.5 45.07

X X new-GAT 23.2 28.8 32.9 37.5 40.2 41.1 62.6 67.7 69.3 46.67

ground edges with high foreground scores; (3) graphical message passing. The

‘GCN’ means the most common graph convolution network model for message

passing; The ‘GAT’ means the general GAT, in which the node features are450

used for object classification and two nodes features are concatenated for rela-

tionship recognition; As described in Section 3.4, The ‘new-GAT’ is equipped

by our model.

The results in Table 3 shows that the model learns the statistical co-occurrence

knowledge for object categories and categories-relationships through the spares455

knowledge graph, which can significantly improve the performance of the scene

graph generation, and the mean score increase from 42.90% to 46.67%. The

RelMN effectively generates meaningful candidate connections, making the model

more accurate and efficient in the features learning. Under the influence of the

RelMN, our model increases the mean score by 8.57% compared with randomly460

selecting object pairs. Specifically, the background edges with high foreground

score can enhance the robustness and reduce the risk of filtering out ground

truth relationships. Its performance is 1.39% higher than the sparse graph

without background edge and is 0.35% higher than random background edges.

The GAT with a new feature aggregation and update way gets 2.50% higher465

than GCN and get 1.60% higher than the general GAT, which shows that the

model integrates the context information on the nodes and edges and improves

the learning of relationship features in the message passing.
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Figure 7: The qualitative results of our model and KERN method on SGCls task. Green

boxes are the correctly predicted object categories, red boxes are the wrongly predicted object

categories and the correct categories are in brackets. Green edges are true predictions for

relationships, red edges are false predictions for relationships and the proper relationships are

in brackets, and gray edges are relationships that are not predicted.

4.4. Qualitative results

In this section, to more intuitively show that the model can better identify470

objects and relationships, and reduce computational complexity, we visualize

several SGCls results from KERN and our model in Figure 7, and display some

sparse graph examples and the execution time in Figure 8. Figure 7 presents the
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Figure 8: The visualization results for our sparse graph structures and the execution time.

qualitative results of our model and KERN method on the SGCls task. These

figures show that our model can better judge meaningful relationships and iden-475

tify them, such as “vase-in front of-window”. In VG dataset, an image contains

11.5 objects and 6.2 relationships on average, which indicates the dense graph

need compute features and classify them on about 120 edges for an image. Ide-

ally, our model constructs the sparse graph with about 25 edges, which reduces

the computational complexity. Figure 8 shows the visualization results for our480

sparse graph structures and the execution time in training on SGCls task. We

can find that the execution time of sparse graph is 0.180s per image, with a

relative reduction of 52.3% compared with the dense graph. The sparse graph

in our model basically covers almost meaningful relationships, and also includes

some background edges which contains numerous unannotated relationships and485

filters out unnecessary search candidates.
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5. Conclusion

In this paper, we propose a knowledge learning framework of constructing

sparse graph and graphical message passing for scene graph generation. First,

the relationship measurement network (RelMN) classifies the relationships into490

foreground and background, and automatically constructs the sparse graph in

the scene. Based on the graph structure, the graph attention network with a

new feature aggregation and update way is used to update the node features and

edge features and explores context clues. Then our model learns the statistical

co-occurrence knowledge of object categories and categories-relationships on495

the structured knowledge model. Finally, we have conducted experiments on

the most widely used Visual Genome benchmark to prove the superiority of

our method. In the ablation study, we analyzed each component of the model

in detail. To dig out fine-grained semantic relationships between object pairs

and prune dense graphs more reasonably for high-level vision applications is an500

interesting future work. Besides, with the fine-grained semantic relationships,

the scene graph can infer better scene structures for down-stream tasks, such as

search by image and VQA.
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