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a b s t r a c t 

With the improvement of multi-view data collection technology, multi-view learning has become a hot 

research area. How to deal with diverse and complex data is one of the challenging problems in multi- 

view learning. However, it is hard for traditional multi-view subspace learning methods to find an effec- 

tive subspace dimension and deal with outliers simultaneously. In this paper, we propose a novel method, 

named as Multi-view Subspace Learning via Bidirectional Sparsity(SLBS), which is effective to overcome 

the above difficulties and learn a better representation. Specifically, we divide the shared subspace into 

two parts. One is a row sparse matrix to do a secondary extraction of features and the other is a col- 

umn sparse matrix to reduce the influence of outliers. The proposed model is a non-convex problem 

which is difficult to be solved. To address this problem, we develop an efficient algorithm and analyze its 

convergence and computational complexity. Finally, compared with other multi-view subspace learning 

methods, the extensive experimental results on real-world datasets present the effectiveness of our SLBS. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Driven by diverse access to information technology, many sam-

les can be presented in two or more different ways. For exam-

le, we can describe images by different visual descriptors such as

OG [1] , LBP [2] , SIFT [3] and GIST [4] etc. Different types of visual

escriptors can represent different features of an image. This kind

f data which is obtained by the different approaches or different

evels for the same object is called multi-view data. 

Real-world data is always characterized by high dimensionality,

omplexity, and redundancy. Therefore, it is difficult to analyze the

ntrinsic structure of multi-view data. To solve this problem, lots of

ulti-view learning methods [5,6] have been proposed. Multi-view

earning aims to better find the relationships of different views.

n the extant literature, the approaches of multi-view learning are

ainly divided into two types: unsupervised learning [7,8] and su-

ervised learning [9,10] . Because the labels of data are difficult to

btain in many cases, we choose unsupervised multi-view learning

s our research aspect. 

There are many traditional unsupervised multi-view learning

ethods. We focus on two categories as follows: (1) Multi-view

earning based on graph [11–13] : This category of methods aims to

earn a fusion graph by using all views and then uses effective al-
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orithms such as special clustering [14] on the fusion graph to get

he results. (2) Multi-view learning based on shared subspace [15–

7] : Based on the assumption of all views share a common repre-

entation, this category of methods aims to learn a unified feature

epresentation of all views. 

Although traditional unsupervised subspace learning ap- 

roaches perform noticeably well in many cases, their efficiency

an be improved by addressing the following challenges. 

Errors may occur in the process of collecting and storing data.

hus how to deal with outliers is one of the difficulties in multi-

iew learning. To reduce the influence of outliers in the data

nd improve the robustness of the model, lots of robust multi-

iew methods have been proposed. They can be divided into two

roups as follows: (1) Robust multi-view learning based on sparse

orm [18–20] . For example, Pu et al. [19] adopts � 2,1 -norm in-

tead of � 2 -norm to improve the robustness of the model. (2) Ro-

ust multi-view learning based on low-rank and sparse decompo-

ition [21–23] . For example, Xia et al. [22] proposes a robust learn-

ng scheme to remove errors and noise and learn a reliable low-

ank representation. 

Traditional multi-view approaches are hard to choose a suitable

imension of the unified representation. Lots of methods make the

imension of the unified representation same as the number of

lusters. However, if the multi-view data is high-dimensional and

he number of clusters is small, then adopting the above men-

ioned schemes may lose too much information. But if we choose

 large dimension of feature extraction, it may not remove redun-

ant features completely. Thus how to select the appropriate fea-
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Table 1 

Notions. 

Notations Descriptions 

d v The dimensionality of the v th view 

n Data size 

V The numbers of views 

r v The reduced dimensionality of the v th view data 

r The dimensionality of feature extraction 

α( v ) The weight coefficient of the v th view 

c The weight redistribution parameter 

X (v ) ∈ R d v ×n Data matrix of the v th view 

U 

(v ) ∈ R d v ×r The projection matrix of the v th view 

P , Q ∈ R r×n The common representation matrix 

α ∈ R V×1 The weight coefficient vector 
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ture dimension is also one of the difficulties in multi-view learn-

ing. 

To make better feature selection and reduce the influence of

outliers effectively, we propose an approach called Multi-view Sub-

space Learning via Bidirectional Sparsity(SLBS) which simultane-

ously captures a common set of features among relevant data and

identifies outliers. Specifically, we decompose the low-dimensional

representation learned by matrix decomposition into two matrices.

We impose � 2, p row sparse norm into the first matrix for capturing

the well-shared features without redundant features among rele-

vant data. It is equivalent to the secondary feature extraction of the

data. To simultaneously identify the outliers and reduce its influ-

ence, we impose � p ,2 column sparse norm into the second matrix.

We propose an effective algorithm to solve the optimization prob-

lem in SLBS and show that the proposed algorithm is also suit-

able for large-size problems. Besides, we provide a detailed theo-

retical convergence analysis of the proposed SLBS algorithm. Com-

pared with traditional multi-view unsupervised feature extraction

approaches, our method has been demonstrated to have better per-

formances on some data sets. 

The remainder of this paper is organized as follows.

Section 2 introduces the notations and reviews some preva-

lent multi-view subspace clustering methods. Section 3 states

the problem to be solved and provides an effective solution

to this problem. The convergence behavior, computational cost

and parameter determination are analyzed in Section 4 . Some

promising comparing results are provided on various kinds of data

sets in Section 5 , followed by the conclusions and future work in

Section 6 . 

2. Related work 

In this section, we introduce some notations used in this pa-

per firstly. Next, we briefly introduce some previous work of multi-

view unsupervised learning. 

2.1. Notation 

In this paper, we write the matrices and vectors as boldface up-

percase letters and boldface lowercase letters. For a matrix W =
(w i j ) , the i th row of W is denoted by W i . and the j th column of

W is denoted by W . j . The Frobenius norm is denoted by || · || F . The

� p -norm of a vector v ∈ R 

n ×1 is defined as || v || p = ( 
n ∑ 

i =1 

| v i | p ) 1 p and

the � q,p -norm of a matrix W ∈ R 

m ×n is defined as 

|| W | | q,p = 

( 

n ∑ 

i =1 

( 
m ∑ 

j=1 

| m i j | q ) 
p 
q 

) 

1 
p , q > 0 , p > 0 . 

We summarize the notations used in this paper in Table 1 . 
.2. RMF 

Regularized Matrix Factorization(RMF) [24] is a general frame-

ork and many typical feature extraction methods can be consid-

red as the special case of RMF. More precisely, the RMF frame-

ork factorizes a d × n -dimensional matrix X into the product of

 d × r -dimensional matrix D and a r × n -dimensional matrix A so

hat the error is minimized. Furthermore, RMF exploits the regular-

zers to constrain the forms of D and A . So RMF can be formulated

s 
 

min 

D , A 

1 

n 

|| X − DA || 2 F + λφ(D ) + γϕ(A ) 

s.t. D ∈ �D , A ∈ �A . 

Where �D and �A are the domains of the dictionary D and

f latent embedding A , respectively. These domains allow to en-

orce additional constraints on those matrices. Several existing al-

orithms, such as PCA, sparse coding(SC), group SC, structured

parse PCA(SSPCA), group Lasso and group structured sparse ma-

rix factorization(GSSMF), can be considered as special cases of this

eneral framework. In this framework, GSSMF performs best on

ost data sets ( Table 2 ). 

.3. MVNMF 

Gao et al. [29] proposed a NMF-based multi-view clustering al-

orithm (MVNMF) which formulates a joint matrix factorization

rocess for all views. The algorithm pushes the representations

f each view towards a consensus representation and uses the

ommon representation for clustering. The objective function of

VNMF is formulated as follows: 
 

 

 

V ∑ 

v =1 

|| X 

(v ) − U 

(v ) ( V 

(v ) ) 
T || 2 F + 

V ∑ 

v =1 

λv || V 

(v ) − V 

∗|| 2 F 

s.t. ∀ 1 � k � K, || U 

(v ) 
.k 

|| = 1 , U 

(v ) , V 

(v ) , V 

∗ � 0 . 

.4. AMGL 

Auto-Weighted Multiple Graph Learning(AMGL) [30] is a

arameter-free graph learning framework that can be used both for

ulti-view clustering and semi-supervised classification. Since we

im to solve an unsurprised problem, then we only care about the

art of multi-view clustering in AMGL. The objective function of

MGL is as follows: 

min 

 

T F = I 

√ 

T r( F T L (v ) F ) 

Here L ( v ) is the normalized Laplacian matrix of the v th view. 

.5. RGC 

Robust Graph Construction(RGC) [21] is a robust graph learn-

ng scheme which aims to learn a reliable graph from real-world

ata with noise and error. Specifically, this paper divides the raw

ata into error part and clean part, and then the graph learning is

ompleted on the clean part. 

min 

D , E , S 
|| D | | ∗ + α|| E | | 1 + βT r( DL D 

T ) + γ || S || 2 F 

s.t. X = D + E , S1 = 1 , 0 � S � 1 

. 

Where α, β and γ are all trade-off parameters. 

. Multi-view subspace learning via bidirectional sparsity 

In this section, we first introduce our objective function step by

tep. Then we provide an effective algorithm which combines the

radient method with the direct solution to solve this problem. 
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Table 2 

RMF. 

Method φ( D ) ϕ( A ) �D or �A 

PCA none none { D | D 

T D = I} 
SC [25] none || A T || 1,1 { D | || D . i || 2 ≤ 1, ∀ i ≤ n d } 

Group SC [26] || D 

T || 1,2 

∑ 

g || A g || 1 , 2 none 

SSPCA [27] 
∑ 

g || D g || ξ , 2 none { A | || A i . || 2 ≤ 1, ∀ i ≤ n d } 

Group Lasso [28] none 
∑ 

g || ( A g ) T | | 1 , 2 { D | D 

T D = I} 
GSSMF [24] 

∑ 

g || ( D g ) 
T || 1 , ∞ || A || 1, ∞ none 

3
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.1. The proposed model 

Assume that we now have V views. Let χ =
 X 

(1) , X 

(2) , . . . , X 

(V ) } represents the data of all views. In the

raditional matrix factorization, we can find two sets of matrix

actors U 

(v ) ∈ R 

d v ×r v and L (v ) ∈ R 

r v ×n to approximate every single

iew: 

 

( v ) ≈ U 

( v ) L ( v ) 

We can view L ( v ) as a potentially low-dimensional represen-

ation of X 

( v ) . This method is not suitable for multi-view prob-

em due to the correlation between different views. To solve this

roblem, we assume that the different features of multi-view data

rise from the same potential space(i.e. low-dimensional represen-

ation). Specifically, when we map the different data to a shared,

ow-dimensional and potential space, we can get a compact dis-

ribution of data and reveal statistical relationships and essential

tructures between different views. Thus for all views, we have 

 

(v ) ≈ U 

(v ) L 

Here L ∈ R 

r×n . Then we can use the shared low-dimensional

epresentation to solve multi-view problems. One of the common

econstruction processes can be formulated as a Frobenius norm

ptimization problem which is defined as follows: 

in 

V ∑ 

v =1 

|| X 

(v ) − U 

(v ) L || 2 F 

Although the above method can get a good low-dimensional

epresentation of multi-view data, it only considers that the multi-

iew data has a shared space and ignores the inherent structure

f the shared subspace itself. We think that even though we have

educed multi-view data to a low dimension, the low-dimensional

epresentation may have redundant features or relevant features.

o the inherent representation should be a row sparse matrix

or feature extraction. Further more, we think that the real-world

ata is not all clean and may have a few outliers. So the inher-

nt representation should be a column sparse matrix for sam-

les. But the inherent low-dimensional representation is not a ma-

rix with sparse rows and sparse columns. Because if so, the low-

imensional representation also optimizes the outliers. Taking the

bove points into account, we divide the low-dimensional repre-

entation into two parts: the first part is a row sparse matrix for

ptimizing features and the other part is a column sparse matrix

or optimizing samples. The objective function can be formulated

s: 

in 

V ∑ 

v =1 

|| X 

(v ) − U 

(v ) (P + Q ) || 2 F 

Here P is a row sparse matrix and Q is a column sparse matrix.

ecause P is a row sparse matrix and then by applying regulariza-

ion, we can formulate it as 

 (P ) = 

r ∑ 

i =1 

|| P i. || 0 2 
But this formula is a NP-hard problem which is hard to be

olved and then we relax it as 

 (P ) = 

r ∑ 

i =1 

|| P i. || p 2 

Here p ∈ (0, 1) represents sparsity. Then the objective function

f our method can formulate as 

in 

V ∑ 

v =1 

|| X 

(v ) − U 

(v ) (P + Q ) || 2 F + β1 || P || p 2 ,p + β2 || Q 

T || p 2 ,p 

Since P and Q have the similar status in the formulation and

hen we set λ = β1 = β2 . 

Consider that different views should play various roles in the

roblem, we use parameters to balance the effectiveness of differ-

nt views. Mathematically, the objective function is 

min 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ( || P || p 2 ,p + || Q 

T || p 2 ,p ) 

+ γ
V ∑ 

v =1 

( α(v ) ) 
c 

Here γ is a smoothing factor and we set it to 1. Finally, we add

he Frobenius norm of U 

( v ) on the objective function to avoid ill-

onditioned problem and reduce the freedom of the variables. So

he finally objective function of our method is 

min 

 

(v ) , P , Q , { α(v ) � 0 } 
V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ1 

V ∑ 

v =1 

|| U 

(v ) || 2 F 

+ λ2 (|| P || p 
2 ,p 

+ || Q 

T || p 
2 ,p 

) + 

V ∑ 

v =1 

( α(v ) ) 
c 
. 

(1) 

.2. Optimization algorithm 

From Eq. (1) we can see that four groups of variables need to be

olved. U 

( v ) s are the projection matrices of all views X 

( v ) s. P and Q

re the unified representations of all views. α contains the weight

oefficients which balance the importance of different views. But it

s difficult to solve Eq. (1) directly because all variables are coupled

n the formula. So we offer an effective algorithm which updates

ariables alternatively. Specifically, we fix three groups of variables

nd only optimize the remaining one variable alternatively. 

(1) Fix P, Q and α, optimize U 

( v ) . When P, Q and α are fixed,

e need to optimize a set of projection matrices U 

( v ) . It is obvious

hat the second and third terms in the objective function are not

elated to U 

( v ) . Then the optimization subproblem becomes 

in 

U (v ) 
G = min 

U (v ) 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ1 

V ∑ 

v =1 

|| U 

(v ) || 2 F (2) 

This problem is convex and derivable, so we can get its solution

ith close form through its derivative. 

∂G 

(v ) = 2 α(v ) [ −X 

(v ) + U 

(v ) (P + Q )] (P + Q ) T + 2 λ1 U 

(v ) (3)

∂ U 
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Set the derivative to zero, we get 

U 

(v ) = X 

(v ) (P + Q ) T [(P + Q ) (P + Q ) T + 

λ1 

α(v ) I k ] 
−1 (4)

(2) Fix 
{

U 

(v ) 
}V 

v =1 
, Q and α, optimize P . We delete the terms

which are not related to P . Then the optimization subproblem be-

comes 

min 

P 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ2 || P || p 
2 ,p 

(5)

It is hard to solve the problem directly because the second term

is non-convex and non-differentiable. Inspired by the basic idea in

solving the L 2,1 term, we take the derivative of || P || p 
2 ,p 

with respect

to P . The derivative of || P || p 
2 ,p 

is 

∂|| P || p 
2 ,p 

∂P 

= 2 DP (6)

Where D ∈ R 

r ×r is a diagonal matrix with the i th diagonal ele-

ment as 

d ii = 

p 

2 

|| P i. || p−2 
2 

(7)

Thus the problem (5) can be solved by solving the following

problem iteratively. 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ2 tr( P 

T DP ) (8)

The new problem is convex and we can get its solution with

close form. 

P = [ 

V ∑ 

v =1 

α(v ) ( U 

(v ) ) 
T 

U 

(v ) + λ2 D ] −1 [ 

V ∑ 

v =1 

α(v ) ( U 

(v ) ) 
T 
( X 

(v ) − U 

(v ) Q )] 

(9)

(3) Fix 
{

U 

(v ) 
}V 

v =1 
, P and α, optimize Q . We can get the objec-

tive function of this subproblem as follows: 

min 

Q 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ2 || Q 

T || p 
2 ,p 

(10)

As similar to P , the problem (10) can be solved by solving the

following problem iteratively. 

min 

Q 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + λ2 tr(QS Q 

T ) (11)

Where S is similar to D , S ∈ R 

n ×n and 

s j j = 

p 

2 

|| Q . j || p−2 
2 

(12)

The problem (11) is a sylvester equation and difficult to be

solved with close form. So we adopt a gradient descent method

to solve it. Assume that we have finished the k th iteration. Then

the (k + 1) th iteration is 

Q k +1 = Q k − t k ∇M( Q k ) (13)

Where ∇M ( Q k ) is the derivative of problem (11) . 

∇M( Q k ) = 

V ∑ 

v =1 

α(v ) ( U 

(v ) ) 
T 

U 

(v ) Q k + λ2 Q k S 

−
V ∑ 

v =1 

α(v ) ( U 

(v ) ) 
T 
( X 

(v ) − U 

(v ) P ) (14)

And t k is the iteration step size and fixed by exact linear search

method. That is 

 k = arg min 

t 
M ( Q k − t∇M ( Q k )) (15)
(4) Fix 
{

U 

(v ) 
}V 

v =1 
, P and Q , optimize α. The objective function

f this subproblem is as follows: 

min 

(v ) � 0 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F + 

V ∑ 

v =1 

( α(v ) ) 
c 

(16)

This problem has an inequality constraint. We set h (v ) = || X 

(v ) −
 

(v ) (P + Q ) || 2 F and then we construct the function as follows: 

(α) = 

V ∑ 

v =1 

α(v ) h 

(v ) + 

V ∑ 

v =1 

( α(v ) ) 
c 

(17)

We can take the derivative on α( v ) and set it to zero. 

∂H 

∂ α(v ) = h 

(v ) + c ( α(v ) ) c−1 = 0 (18)

Then we can get α( v ) as follows: 

(v ) = (−h 

(v ) 

c 
) 

1 
c−1 (19)

One point should be mentioned here. Because of h ( v ) ≥ 0 and

 < 0, the derived results of α( v ) satisfy its non-negativity condi-

ion. The procedure of our method is listed in Algorithm 1 . 

lgorithm 1 

nput: Data matrix X 

(v ) , parameters λ1 , p, λ2 and c. 

utput: the latent subspaces P and Q . 

.Initialize α(v ) = 

1 
V , P = P 0 and Q = Q 0 ; 

epeat 

.Update projection matrices U 

(v ) using Eq. (4); 

.Update row sparsely shared matrix P using Eq. (9); 

.Update column sparsely shared matrix Q using Eq. (13); 

.Update weight coefficients α(v ) using Eq. (20); 

ntil converges 

. Discussion 

In this section, we analyze SLBS in three aspects. First, we prove

hat the objective function value of SLBS is non-increasing in each

teration. The second part is the computational complexity which

an prove the efficiency of Algorithm 1 . Finally, we discuss the in-

uence of model parameters and then identify the update strate-

ies. 

.1. Convergence analysis 

emma 1. Suppose that a, b are the nonzero vectors, then for any

 ∈ (0, 2], 

| a || p 
2 

− p 

2 

|| a || 2 2 

|| b|| 2 −p 
2 

� || b|| p 
2 

− p 

2 

|| b|| 2 2 

|| b|| 2 −p 
2 

(20)

q. (20) hold if and only if || a || p 
2 

= || b|| p 
2 

. 

roof. Denote ϕ(t) = t p − p 
2 t 

2 + 

p 
2 − 1 , then we have 

 

′ 
(t) = p t p−1 − pt = pt ( t p−2 − 1) (21)

We analyze the Eq. (21) . For any p ∈ (0, 2], if t ∈ (0, 1], ϕ 

′ 
(t) � 0

nd if t > 1 , ϕ 

′ 
(t) < 0 . So t = 1 is the maximum point. We find that

hen t = 1 , ϕ(t) = 0 . In other words, when t > 0, ϕ( t ) ≤ 0 always

tands up. 

We let t = 

|| a | | 2 || b| | 2 and then can get 

(t) = t p − p 

2 

t 2 + 

p 

2 

− 1 = 

|| a || p 
2 

|| b|| p −
p 

2 

|| a || 2 2 

|| b|| 2 + 

p 

2 

− 1 � 0 (22)

2 2 
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The Eq. (22) is equivalent to the following inequality. 

| a || p 
2 

− p 

2 

|| a || 2 2 

|| b|| 2 −p 
2 

� || b|| p 
2 

− p 

2 

|| b|| 2 2 

|| b|| 2 −p 
2 

(23)

�

emma 2. By lemma 1 , we can prove that the optimal solution

btained by Formula (8) is also a solution which makes Formula

5) non-increasing. 

roof. We set F (P ) = 

V ∑ 

v =1 

|| X (v ) − U 

(v ) (P + Q ) || 2 F and assume the

olution of the third step is P ∗. Then we can get 

 ( P ∗) + λtr( ( P ∗) T D P ∗) � F (P ) + λtr( (P ) T DP ) (24)

Here D ∈ R r × r is a diagonal matrix with the i th diagonal ele-

ent as d ii = 

p 
2 || P i. || p−2 

2 
. So the function (24) is equivalent to the

ollowing inequality. 

 ( P ∗) + λ
p 

2 

|| P ∗|| 2 2 

|| P || 2 −p 
2 

� F (P ) + λ
p 

2 

|| P || 2 2 

|| P || 2 −p 
2 

(25)

y Lemma 1 , we can get 

r 
 

i =1 

(|| P ∗i. || p 2 
− p 

2 

|| P ∗
i. 
|| 2 2 

|| P i. || 2 −p 
2 

) � 

r ∑ 

i =1 

(|| P i. || p 2 
− p 

2 

|| P i. || 2 2 

|| P i. || 2 −p 
2 

) (26) 

ubstituting formula (26) into formula (25) , the result is 

 ( P ∗) + λ
r ∑ 

i =1 

|| P ∗i. || p 2 
� F (P ) + λ

r ∑ 

i =1 

|| P i. || p 2 
(27)

t is equal to the following formula. 

 ( P ∗) + λ|| P ∗|| p 
2 ,p 

� F (P ) + λ|| P || p 
2 ,p 

(28)

�

heorem 1. By employing the optimization procedure in Algorithm 1 ,

he objective function value of SLBS in formula (1) is non-increasing. 

roof. We set 

 ( U 

(v ) , P, Q, α(v ) ) = 

V ∑ 

v =1 

α(v ) || X 

(v ) − U 

(v ) (P + Q ) || 2 F 

+ λ1 

V ∑ 

v =1 

|| U 

(v ) || 2 F 

+ λ2 (|| P || p 2 ,p 
+ || Q 

T || p 
2 ,p 

) + 

V ∑ 

v =1 

( α(v ) ) 
c 

(29) 

We use 
∼

U 

(v ) , 
∼
P , 

∼
Q 

, 

∼
α(v ) to denote the updated U 

( v ) , P, Q, α( v ) in

ach iteration. We first prove that updating U 

( v ) will not increase

he value of the objective function. According to the Eq. (4) , we

ave 

 ( 
∼

U 

(v ) , P, Q, α(v ) ) � L ( U 

(v ) , P, Q, α(v ) ) 

Then we prove that updating P and Q will not in-

rease the value of the objective function. We set F (P ) =
V ∑ 

 =1 

|| X (v ) − U 

(v ) (P + Q ) || 2 
F 

and we can get F ( 
∼
P ) + λtr( ( 

∼
P ) T D 

∼
P ) �

 (P ) + λtr( (P ) T DP ) by the Eq. (9) . Through the Lemma 2 , we ob-

ain that F ( 
∼
P ) + λ|| ∼P || p 2 ,p 

� F (P ) + λ|| P || p 
2 ,p 

. The update of Q is the

ame as P and then we can get that when we update P and Q

hrough Algorithm 1 , the value of the objective function will not

ncrease. That is, 

 ( 
∼

U 

(v ) , 
∼
P , 

∼
Q 

, α(v ) ) � L ( 
∼

U 

(v ) , P, Q, α(v ) ) 

Then, since the updated αv are the optimal solution to the

roblems in Eq. (17) respectively, the following inequalities hold. 

 ( 
∼

U 

(v ) , 
∼
P , 

∼
Q 

, 

∼
α(v ) ) � L ( 

∼
U 

(v ) , 
∼
P , 

∼
Q 

, α(v ) ) 
Combine the above conclusions, we get the results. �

Through the convergence analysis of our model, we can safely

ome to the following conclusions. We think that our convergence

nalysis is the first analysis of the multi-view model with bidirec-

ional sparsity. Thus, it has extended the use of sparsity into new

cope with theoretical guarantee. We think that our algorithm lays

 preliminary foundation for further theoretical analysis of other

odels with bidirectional sparsity. For example, it is natural to

xtend the application to supervised multi-view learning and use

idirectional sparsity for the relevant features and outliers. In the

otential application of multi-task learning, we can use bidirec-

ional sparsity for the relevant tasks and outlier tasks. We think

hat our convergence analysis can also be borrowed for theoretical

uarantee. 

.2. Computational complexity 

As SLBS is solved in an alternative way, we can sum the compu-

ational complexity of every sub-step to calculate their total com-

utational complexity. The computational complexity of every sub-

tep is listed as follows: 

1) Eq. (4) aims to update the group of projection matrices U 

( v ) . It

has closed form solution and the computational complexity is

O( 
V ∑ 

v =1 

( d v × n × r) ) . 

2) The main computational complexity of Eq. (9) is when we up-

date the unified matrices P . It has closed form solution and the

computational complexity is O( 
V ∑ 

v =1 

( d v × n × r) ) . 

3) Eq. (13) aims to update the shared matrix Q . But it is

hard to get the close form solution and we use the itera-

tive method to solve it. Then the computational complexity is

O( 
V ∑ 

v =1 

( d v × n × r × k ) ) . Where k is the number of iterations of

this subproblem. 

4) The problem in Eq. (20) aims to update the optimal weight for

each view. The computational complexity is O( 
V ∑ 

v =1 

( d v × n × r) ) .

The parameter k is also less than twenty and then the to-

al computational complexity of SLBS is O(T ×
V ∑ 

v =1 

( d v × n × r × k ) ) ,

here T is the number of iterations. Accordingly, our proposed

LBS method costs time only linear in n . 

.3. Parameter determination 

Parameter is an important part of the model and parame-

er determination is closely related to the performance of the

odel. There are many parameters which need to be determined

n Eq. (1) . But we can divide them into two parts. One part is opti-

ization variables such as P, Q, α and U 

( v ) which need to optimize

n each iteration. The other part is hyper-parameters such as λ1 ,

2 , p and c which need to be determined before the iteration of

LBS. 

Since every hyper-parameter has its unique impact, we can

etermine some hyper-parameters empirically by the previous

esearches. For our model, we will list that how each hyper-

arameter determines. As for p , it is designed to guarantee the

parsity of P and Q . The best sparse approximation is p = 0 , but it

s a NP-hard problem and hard to be solved. Most papers set p = 1

ecause it is the optimal convex approximation. We set p = 1 / 2

ather than p = 1 to get a more accurate sparse approximation to

p = 0 . As for c , it is designed to measure the importance of views.

ifferent c can change the weight of views. 



6 R. Fan, T. Luo and W. Zhuge et al. / Pattern Recognition 108 (2020) 107524 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

p  

S

5

 

p  

r  

i

(  

 

 

 

 

 

(  

 

 

 

 

 

 

 

(  

 

 

 

 

(  

 

 

 

 

 

 

 

5

 

t  

o  

o  

v  
As for the parameter λ1 and λ2 , it is very important for the final

performance since they are employed to balance the importance of

loss function, sparse representation and regularization factor. Since

there is no prior information about these parameters, we change

them in [10 −5 , 10] . We will provide some experimental results in

the next section. 

5. Experiment 

In this section, we design six groups of experiments. The first

group contains the clustering results on six multi-view datasets.

The second group is to show some results about convergence be-

havior. The third group compares some results with different pa-

rameters. The fourth group shows the time cost of compared meth-

ods. The fifth group shows the visualization of row sparse matrix P

and column sparse matrix Q and the last group shows the robust

analysis. 

5.1. Data set description and evaluation metric 

We select six standard datasets with different f eatures to evalu-

ate the effectiveness of our method. In many real applications, six

multi-view datasets are commonly used. 

MSRC_v1 data set consists of 240 images and is divided into 8

classes. According to Lee and Grauman [31] , we select 7 classes

composed of face, tree, airplane, building, bicycle, cow, car and

each class has 30 images. To distinguish all scenes, we extract 256

Local Binary Pattern(LBP), 48 Color Moment(CMT), 1302 Centrist,

100 Histogram of Oriented Gradient(HOG), 512 GIST and 200 SIFT

features. 

Handwritten numerals(HW) data set is composed of 20 0 0

data points for 0 to 9 ten digit classes and each class has 200

data points. Six published features can be used for clustering: 47

Zernike moment (ZER), 240 pixel averages in 2 × 3 windows

(PIX), 64 Karhunen-love coefficients (KAR), 216 profile correlations

(FAC), 76 Fourier coefficients of the character shapes (FOU) and 6

morphological (MOR) features. 

Caltech_7 contains 8677 images which belong to 101 categories.

According to [32] , we choose the widely used 7 classes, i.e., Faces,

Dolla-Bill, Snoopy, Windsor-Chair, Motorbikes, Garfield and Stop-

Sign. We sample the data and we choose 441 images as Caltech-7

totally. We extract the same visual features: LBP, HOG, GIST, CMT,

CENTRIST and SIFT. 

Scene15 is composed of 4485 images belonging to 15 cate-

gories: highway, inside of cities, tall buildings, streets, suburb res-

idence, forest, coast, mountain, open country, bedroom, kitchen,

livingroom, office, industrial and store. Six visual features are ex-

tracted: SIFT, SURF, PHOG, LBP, GIST and wavelet texture (WT). 

MvYale contains 165 images of 15 volunteers and everyone has

fifteen images. This data set is a gray-scale data set and mainly

includes changes in lighting, facial expressions and posture. To an-

alyze data effectively, five visual features are extracted: SIFT, HOG,

LBP, WT and GIST. 

KSA includes four subjects performing five actions. Here, each

action is regarded as a class. We select 20 0 0 video frames from

each action, forming a subset of 10,0 0 0 examples. We use four

pose features, i.e. , f JJ _ d , f JL _ d , f LL _ a and f PP _ a [33] extracted in [34] .

5.2. Experiment setup 

Since we focus on unsupervised learning, we compare SLBS

with some unsurprised methods and use K-means clustering

method to evaluate the effectiveness of our method. We list the

compared methods as follows. 

• Best Single View(BSV) : We use the proposed approach SLBS

on each single view and employ K-means on low-dimensional
representations to obtain clustering results. The best results on

these views will be reported. 
• Group Structured Sparsity Matrix Factorization(GSSMF) : An

approach which learns a latent space factorized into dimen-

sions by structure sparse proposed in [24] . 
• Multi-View Spectral Embedding (MSE) : One multi-view graph

learning method proposed in [35] . 
• Multi-View Nonnegative Matrix Factorization (MVNMF) : The

NMF-based multi-view clustering method proposed in [29] . 
• Auto-Weighted Multiple Graph Learning(AMGL) : Another

multi-view graph learning method proposed in [30] . 
• Large-scale Multi-view Subspace Clustering(LMVSC) : A novel

multi-view subspace learning method proposed in [36] with

linear time. 

For the experimental results, two different metrics clustering

ccuracy(ACC) and normalized mutual information(NMI) are em-

loyed to evaluate the performances of our proposed methods

LBS for clustering. 

.3. Comparison between SLBS and other algorithms 

Tables 3 and 4 show the NMI and ACC results of all the com-

arative methods with different dimensions of feature extraction

espectively. In terms of the clustering results, we have the follow-

ng observations: 

1) Compared with other feature extraction methods of the metric

ACC, SLBS performs best in most cases on most datasets. Specif-

ically, SLBS exceeds the best ACC of other methods by nearly

10% on the Scene15 dataset and exceeds average ACC of other

methods by more than 5% in most datasets. And we can get

similar conclusions for the other metric NMI. This experimental

results can prove the validity of our method. 

2) As for the comparison between our best single view

method(BSV) and previous multi-view approaches, the latter

does not always perform better. This may be caused by the

fact that previous methods characterize the structures of each

view data separately and combine them by simple addition op-

erations. But compared with the weighted multi-view methods,

the performance of our best single view method is also better

sometimes. This is may be caused by the bidirectional sparsity

of the unified subspace which plays an essential role. 

3) As is well-known, graph-based multi-view feature selection ap-

proaches perform very well when the dimension of selected

features is same as the number of data categories. We also

compared our method with graph-based approaches and find

that our method is better than the best result of them in most

cases. This effectively proves the validity of our algorithm. 

4) By analyzing the ACC and NMI of methods based on matrix fac-

torization, we can obtain that the ACC and NMI increase first

and decrease later with the increase of dimension. It is consis-

tent with intuition. Since as dimension increasing, the learned

subspace is closer to the intrinsic dimension first and redun-

dant features appear when the dimension of the subspace is

more than the intrinsic dimension. But our method also per-

forms well with high dimensions in most datasets. This proves

the validity of bidirectional sparsity in SLBS. 

.4. Convergence behavior 

We draw the iterative convergence curves of MSRC_v1, Cal-

ech_7 and HW datasets in Fig. 1 for verifying the convergence of

ur algorithm SLBS. By analyzing the iterative convergence curves,

ur algorithm is non-increasing during the iterations and con-

erges to a definite value gradually. In addition, the algorithm con-
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Table 3 

ACC of different methods on six data sets with different dimensions of subspaces. 

Dataset r BSV GSSMF MVNMF MSE AMGL LMVSC SLBS 

Scene15 15 0.3698 0.4104 0.4142 0.2441 0.2526 0.4049 0.4947 

19 0.4125 0.4390 0.4470 0.2474 0.2637 0.4127 0.5010 

23 0.4341 0.4178 0.4093 0.2363 0.2972 0.4118 0.5001 

27 0.4357 0.4265 0.3991 0.2566 0.2956 0.4285 0.4934 

31 0.4140 0.4359 0.4341 0.2557 0.3152 0.4123 0.5346 

MvYale 15 0.6303 0.6424 0.5535 0.6969 0.5575 0.3879 0.7333 

19 0.5818 0.6787 0.5757 0.6484 0.6060 0.3636 0.7212 

23 0.5515 0.6727 0.6141 0.6060 0.5515 0.3758 0.6787 

27 0.5333 0.6000 0.6020 0.5212 0.4424 0.3576 0.6424 

31 0.5393 0.6303 0.6020 0.5151 0.4303 0.3576 0.6303 

MSRC_v1 7 0.6904 0.8143 0.7690 0.8761 0.9095 0.7714 0.9190 

10 0.7238 0.8000 0.7290 0.6476 0.6428 0.8048 0.9381 

15 0.6380 0.9095 0.6566 0.5476 0.5142 0.8143 0.9619 

20 0.6571 0.9333 0.6222 0.4619 0.4952 0.8143 0.9810 

25 0.7523 0.9333 0.5190 0.3476 0.4952 0.8190 0.9857 

HW 10 0.7685 0.7765 0.7928 0.8367 0.8177 0.8560 0.9350 

15 0.8240 0.9020 0.8995 0.6085 0.6540 0.8425 0.9295 

20 0.7770 0.8920 0.8708 0.5615 0.5520 0.8445 0.9410 

25 0.8195 0.8905 0.8785 0.5400 0.6035 0.8315 0.9360 

30 0.8250 0.9020 0.9196 0.5250 0.5105 0.8900 0.9475 

KSA 5 0.5790 0.6395 0.5287 0.4846 0.5060 0.5754 0.6916 

8 0.5660 0.6534 0.6590 0.4384 0.4599 0.5829 0.7231 

11 0.6005 0.6521 0.6284 0.4384 0.4301 0.5841 0.7295 

14 0.5964 0.6479 0.6740 0.4230 0.4065 0.6832 0.7354 

17 0.6344 0.6487 0.6632 0.3769 0.3932 0.6866 0.7307 

Caltech_7 7 0.6825 0.7188 0.6386 0.5154 0.5736 0.7256 0.7710 

10 0.6916 0.7074 0.5993 0.5474 0.5895 0.7324 0.7234 

15 0.7256 0.7029 0.6213 0.5743 0.5555 0.7347 0.7324 

20 0.6780 0.6825 0.5661 0.5092 0.4807 0.7438 0.7687 

25 0.6439 0.7074 0.5684 0.4671 0.4965 0.7120 0.7256 

Table 4 

NMI of different methods on six data sets with different dimensions of subspaces. 

Dataset r BSV GSSMF MVNMF MSE AMGL LMVSC SLBS 

Scene15 15 0.4015 0.4004 0.4334 0.3388 0.3494 0.3607 0.5058 

19 0.4255 0.4274 0.4360 0.3184 0.3595 0.3621 0.5068 

23 0.4266 0.4191 0.4438 0.3093 0.4159 0.3708 0.5081 

27 0.4255 0.4182 0.4391 0.3332 0.4460 0.3812 0.5103 

31 0.4214 0.4378 0.4336 0.3290 0.4397 0.3773 0.5254 

MvYale 15 0.6623 0.7032 0.6049 0.7476 0.6626 0.3993 0.7267 

19 0.6621 0.7017 0.6366 0.7092 0.6587 0.3869 0.7331 

23 0.6312 0.7132 0.6591 0.6817 0.6565 0.3788 0.7169 

27 0.5953 0.6571 0.6594 0.6313 0.5700 0.4003 0.7111 

31 0.5994 0.6545 0.6683 0.6111 0.5619 0.3637 0.6894 

MSRC_v1 7 0.6071 0.7648 0.7223 0.8097 0.8499 0.6970 0.8533 

10 0.5845 0.7557 0.7195 0.6039 0.6450 0.7305 0.8839 

15 0.5471 0.8554 0.6341 0.5224 0.5300 0.7198 0.9146 

20 0.5763 0.8777 0.6088 0.3848 0.4414 0.7018 0.9570 

25 0.6757 0.8764 0.5494 0.2978 0.4414 0.7229 0.9677 

HW 10 0.7162 0.7440 0.7523 0.7370 0.7455 0.7512 0.8778 

15 0.7419 0.8204 0.8114 0.7629 0.7459 0.7415 0.8670 

20 0.7357 0.8150 0.8077 0.6745 0.6616 0.7537 0.8823 

25 0.7556 0.8118 0.8228 0.6256 0.6761 0.7157 0.8775 

30 0.7523 0.8204 0.8446 0.5865 0.5826 0.8077 0.8947 

KSA 5 0.4050 0.4375 0.3353 0.4489 0.4539 0.3558 0.4936 

8 0.3840 0.4634 0.4029 0.4622 0.4753 0.3567 0.5403 

11 0.3898 0.4646 0.4274 0.4390 0.4356 0.3954 0.5311 

14 0.3920 0.4615 0.4491 0.3712 0.4008 0.4388 0.5462 

17 0.3976 0.4633 0.4530 0.3798 0.3905 0.4396 0.5459 

Caltech_7 7 0.6412 0.6839 0.5368 0.4933 0.6336 0.6766 0.7237 

10 0.6553 0.6968 0.5647 0.5846 0.5752 0.7018 0.7444 

15 0.6386 0.6716 0.5935 0.4868 0.5048 0.6494 0.7558 

20 0.6271 0.6742 0.5379 0.4700 0.4736 0.6976 0.7396 

25 0.6417 0.6784 0.5366 0.3901 0.3785 0.6495 0.7518 
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Fig. 1. Objective values of SLBS with different numbers of iterations. 
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Fig. 2. Sensitivity analysis on λ1 and λ2 with different parameter c. 

 

 

 

 

 

 

 

 

 

 

Table 5 

Computational complexity with respect to 

the data size n of all methods. 

Method Computational complexity 

GSSMF O(n ) 

MVNMF O(n ) 

MSE O(n 3 ) 

AMGL O(n 3 ) 

LMVSC O(n ) 

SLBS O(n ) 

t  

d  

m  

o  
verges well with about 10 iterations and thus fast convergence

speed is an advantage of our method. 

5.5. Computational time and parameter determination 

To demonstrate the efficiency of our method for computational

time, we compare the runtime on six data sets which have differ-

ent data and feature scales in Table 6 . Since all methods need a

K-means algorithm for clustering and the focus of attention is the

process of learning subspace, we do not report the computational

time of the clustering algorithm. 

We compare the time complexity of SLBS with other methods

about the data size n in Table 5 . From Table 6 , we can find that

our method costs the least time on six datasets. We discuss the

essential reasons for the experimental results. (1) The computa-
ional time of graph-based methods is impacted by the number of

ata n most because it needs to decompose the n -dimensional data

atrix and the computational complexity is O ( n 3 ). Our method

nly has linear complexity for the same case. Thus as the size of
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Fig. 3. The visualization of row sparse matrix P and column sparse matrix Q in two datasets. 
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Fig. 4. Robust analysis with different error example ratios in two datasets. 

Table 6 

Average runtime comparison (seconds) on 6 datasets. 

Dataset GSSMF MVNMF MSE AMGL LMVSC SLBS 

MSRC_v1 0.2256 0.5308 0.3713 0.1721 0.2187 0.1237 

Caltech_7 0.4360 0.9858 6.0967 0.7399 0.3628 0.2367 

HW 0.7686 2.2252 118.4874 47.8417 1.0367 0.3460 

MvYale 0.1935 0.4990 0.1788 0.1135 0.1502 0.0735 

Scene15 7.2818 11.6786 552.3268 437.6027 3.3847 2.7510 

KSA 1.7907 7.1253 4424.311 10145.02 5.5009 1.0249 
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c  

s  
he data increasing, our method is much faster than graph-based

ethods. (2) Even though MVNMF, GSSMF and LMVSC have the

ame computational complexity as our method, our method is still

aster than them. By analyzing we find that our method has a
aster convergence rate. For example, our method needs 35 iter-

tions while MVNMF and GSSMF need more than 50 iterations on

SRC_v1. 

As for the parameter determination problem, we design experi-

ents on two data sets, i.e. MSRC_v1 and Caltech_7. Since we still

eed to determine three parameters, three experiments are per-

ormed on one data set and the difference of them is the value of

 . We vary parameter c from {-1, -2, -3}. When the parameter c is

xed, we vary λ1 from {0.1, 0.2, 0.3, 0.4, 0.5} and λ2 from {2, 4,

, 8, 10}. The dimension of the studied subspace is set to 10 and

CC was selected as the evaluation index. The results are shown in

ig. 2 . 

As seen from Fig. 2 , the result shows that different parameters

ause different results. This proves the importance of parameter

election. We find the results of two sets perform well when the
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parameter c is equal to −1. It may be caused by the fact that the

large c indicates the more attention to the diversity of different

views. Besides, the optimal solutions of two data sets have differ-

ent λ1 and λ2 since these two data sets have different data char-

acteristics. 

5.6. The visualization of common representation 

We give the visualization of row sparse matrix P and column

sparse matrix Q in Fig. 3 . From Fig. 3 , We can see that the row

sum of P has several small values and the column sum of Q has

several larger values. This is reasonable because most of the fea-

tures after the first dimension reduction are useful and there are

not lots of outliers in the datasets. The experimental results show

the effectiveness of our algorithm. 

5.7. Robust analysis 

To analyze the robustness of our model, we compare our

method SLBS with two robust multi-view subspace learning meth-

ods called RMSC [22] and RRMA [19] on two datasets. We have de-

signed three error data ratios, which are 0, 10% and 20%. As shown

in Fig. 4 , with the increase of the number of error data, the per-

formance of three methods tends to be decreased, but SLBS always

performs best when compared with RMSC and RRMA. This fully

demonstrates the robustness of our algorithm. 

6. Conclusion 

In this paper, we have proposed an unsupervised subspace

learning method named as SLBS for multi-view data to learn a uni-

fied subspace representation. Specially, we analyze the structure of

the common representation by the sparsity of both features and

data. We further discuss the convergence and computational com-

plexity of our algorithm, both theory and experiment results prove

the effectiveness of SLBS. Finally, we verify the sparsity of the com-

mon representation and the robustness of our model in the exper-

iment. 

The convergence analysis can guarantee that the value of our

objective function is non-increasing. Thus the first further work

is how to design a new algorithm to obtain the location solution

or even the optimal solution under the guarantee of theory. The

second future work is to apply this bidirectional sparsity to other

applications, such as surprised multi-view learning and multi-task

learning. 
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