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Abstract. Multi-instance learning (MIL) is a popular learning paradigm
rooted in real-world applications. Recent studies have achieved promi-
nent performance with sufficient annotation data. Nevertheless, acquisi-
tion of enough labeled data is often hard and only a little or partially
labeled data is available. For example, in web text mining, the concern-
ing bags (positive) is often rare compared with the unrelated ones (nega-
tive) and unlabeled ones. This leads to a new learning scenario with little
negative bags and many unlabeled bags, which we name it as unilateral
data. It is a new learning problem and has received little attention. In
this paper, we propose a new method called Multiple Instance Learn-
ing for Unilateral Data (MILUD) to tackle this problem. To utilize the
information of bags fully, we consider statistics characters and discrim-
inative mapping information simultaneously. The key instances of bags
are determined by the distinguishability of mapped samples based on
fake labels. Besides, we also employed a empirical risk minimization loss
function based on the mapping results to learn the optimal classifier and
analyze its generalization error bound. The experimental results show
our method outperforms other existing state-of-art methods.

Keywords: multi-instance learning · negative and unlabeled data learn-
ing · bag mapping · classification.

1 Introduction

Multiple instance learning (MIL) is one of the popular learning paradigms in the
practical applications. In MIL, the annotations of data were only assigned to the
bags. Therefore, MIL methods are able to deal with the classification problems
with label ambiguity and reduce the requirements of the label information. Due
to their excellent characteristics and outstanding performance, they have been
widely used in many practical applications, such as drug activity prediction[9],
image classification [1] and text recognition [4] etc.

In literature, there are a lot of methods proposed to solve MIL problem.
These methods can be divided into three categories: instance-level methods,
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bag-level methods and embedding approaches by different characteristics [1].
The first group is the instance-level methods [9, 15, 13, 19, 5], which all of bags
split up into the instances and then learn the optimal classifier based on all
instances. Ins-KI-SVM [15] is one of their representative methods and proposed
to build the instance classifier by maximizing the margin between the selected
key instances. The second group is bag-level methods [17, 11, 12, 8, 2], which build
the classification model of the bags. Citation-kNN [17] and MI-Kernel [11] are
two representatives of traditional bag-level methods. Citation-kNN [17] adapts
kNN to MIL problem, which not only take the neighbors of bag into account but
also samples that count bag as neighbor. Smola et al. [11] proposed MI-Kernel
to obtain the high dimensional mapping of each bag via set kernels and learn
a linear model by SVM. Last group is embedding methods [7, 6, 14, 10, 5, 18],
whose main idea is to extract particular kinds of information for each bag in
the new latent feature space. After mapping, MIL problem is transferred as a
classical supervised problem. Wu et al. [18] proposed a discriminative mapping
approach named as MILDM, which maps bags into the latent feature space via
discriminative instance pool.

Although existing methods can handle the MIL problem well, most of them
require the entire accurate label information of all bag data. However, acquisi-
tion of enough labeled data is often hard and only a little partially labeled data
is available in practice. For example, in web text mining, the concerning bags
(positive) is often rare compared with the unrelated ones (negative) and unla-
beled ones. In the spam identification, the feature of spam (positive) will change
to evade our shielding. Traditional classifier needs to continuously update the
positive train set to ensure its effectiveness, while the NU classifier only needs to
update the unlabeled data, which cost much less. This leads to a new learning
scenario with little negative bags and many unlabeled bags, which we name it
as unilateral data. As far as we know, this problem has so far been little studied
and cannot be suitable for existing multiple instance methods. Bao et al. [3]
proposed a convex classification method called PU-SKC which solves the MIL
problem in PU scenario based on set kernel. However, set kernel can only extract
maximum and minimum of the instances features in bag. Since this strategy is
relatively simple and only extracts the training set information from data level,
the performance of classifier cannot be guaranteed during the training process.

In this paper, we propose a new method called Multiple Instance Learning
for Unilateral Data (MILUD) to tackle this problem. Specifically, to utilize the
information of bags fully, we consider statistics characters and discriminative
mapping information simultaneously to make the bags in different classes more
separable. To preserve more data information of bags, the key instances of bags
are selected by maximizing the distances between bags in different classes. After
bag mapping, we propose to use the convex NU empirical risk loss to learn the
optimal classifier for unilateral data problem. Besides, the generalization error
bound of our method are provided. Finally, the extensive experimental results
show our proposed method achieves better performance than other existing state-
of-art methods. The contributions of this paper can be summarized as follows:
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– To the best of our knowledge, our method MILUD is the first one proposed
to solve the unilateral MIL data problem.

– We propose a novel method by incorporating the statistics characters with
the discriminative mapping information to enhance its performance. Besides,
we select the key instances to preserve more discriminate embedded features
of bags by maximizing the distances between bags in different classes.

– The extensive experimental results on multiple public datasets verify the
effectiveness of our proposed method and analyse the effect of the quantity
of labeled and unlabeled data.

2 The Proposed Method

The problem of NU learning in MIL scenario comes from real life and have
rarely been studied. For example, when the probability distribution of positive
data changes frequently and the negative part remains constant. In this case,
cost of updating the unlabeled train set is much less than the positive train
set, which leads to a NU learning problem. Compared with traditional learning,
difficulties in this scenario are mainly reflected in two aspects. First, to extract
the information of positive and negative categories from only unlabeled and
negative data. It indicates that the emphasis of NU learning is how to fully
utilize unlabeled data. Second, labels of positive bags cannot express the labels
of specific instances in it. This characteristic makes the unlabeled data, which is
the focus point in NU learning, become ambiguous.

In this paper, we propose a novel method called MILUD, which can overcome
the inexact information in NU-MIL problem. The mean ideas of our approach
are corresponding to the two difficulties. We first use statistical and discrimina-
tive feature to fully extract the effective information simultaneously. After the
NU-MIL problem be convert to a NU learning problem, train the classifier by
minimize the empirical risk loss on the basis of dataset distribution.

Before presenting the details of our method, we describe the notations used
in this paper. Denote BNp = {xNp1 ,xNp2 ,· · · ,xNpi}, B

U
q = {xUq1 ,xUq2 · · · ,x

U
qj} denote

pi and qj instances in bag BNp and BUq , respectively, where xNpi , xUqj ∈ Rd.
The negative and unlabeled training sets are defined as DN={BN1 ,BN2 ,· · · ,BNNn}
and DU={BU1 ,BU2 ,· · · ,BUNu}, Nn and Nu represent the number of negative and
unlabeled bags in DN and DU .

2.1 Bag Mapping

Bag mapping solves the label ambiguous problem in MIL by extracting feature
mainly from two perspectives: data-based and label-based. However, in NU-MIL
scenario, label-based mapping usually leads to unsatisfied performance, because
labels of the unlabeled samples are invisible. Therefore, we consider the data-
based mapping features first, which can be extracted without label information.
Statistical feature is a great choice to be the first part of our mapping. It comple-
ments the shortcomings of label-based features and possesses low computational
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cost. Motivated by the idea of set kernel [11], we calculate statistic s3m(B) which
are consist of the maximum, minimum and mean values of each dimension x(i)

of the instances x in bag B by the equation below:

s3m(B) =

[
min
x∈B

x(1), · · · ,min
x∈B

x(d),max
x∈B

x(1), · · · ,max
x∈B

x(d), x(1), · · · , x(d)
]
.

(1)
The maximum and minimum value describe the boundary of bags, and the

average value can further give the outlier information of bags. Based on Eq.(1),

the set kernel k̃3m can be calculated by

k̃3m (B,C) = k̃ (s3m(B), s3m (C)) , (2)

where k̃ can be any kernel function and it is a basic mapping derived from set
kernel based on the limit information. Now we can map the bags to single in-
stances by kernel centers {C1, C2, · · · , CM} and k̃3m (B,C) mentioned in Eq.(2):

Φ3m(B) :=
[
k̃3m (B,C1) , · · · , k̃3m (B,CM )

]>
(3)

However, the statistical features do not make use of label information, which
means the extraction of dataset information is insufficient. This is why we adopte
discriminative feature, which is a excellent label-based mapping strategy. The
discriminative feature should meet the following two conditions:

– bags with same label are as similar as possible in mapping feature space;
– bags with different labels are as diverse as possible in mapping feature space.

These two conditions guarantees the separability of samples in the mapping
space, because it makes labels directly linked to the classification performance.
For PN data, training process is carried out on the existing of two categories
of label. However, there is only label information of negative data for NU data,
which makes it impossible to maximize the distance between different data di-
rectly. By mapping process, when keeping negative data far away positive data,
it also makes negative data far away from itself. Therefore, it is not feasible to
map data by only discriminative features in NU-MIL scenarios.

To solve the discriminative feature extraction problem of NU dataset thereby
further obtain more complete train set information, we separate the ”most likely
positive samples” from unlabeled data. The specific method is to train a prelim-
inary classifier by Eq.(3), and on this basic classifier we can give each unlabeled
bag a fake label. Here we directly use the result of this strategy. The unlabeled
data DN is divided into two parts: DUP and DUN , which are the positive and
negative bags identified from unlabeled bags. Denote DN ′

= {DN , DUN} and
DP ′

= {DUP } as the new dataset based on fake labels, which is the relatively
reliable information extracted from the unilateral data.

Since the label-based extraction problem is solved, next we’ll explain the step
details of discriminative feature. Denote ΦDIP (B) as a mapping rule based on
instance similarity s:

ΦDIP (B) =
[
s
(
B,xφ1

)
, · · · , s

(
B,xφm

)]>
, (4)
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where s
(
B,xφk

)
= maxxl∈B exp

(
−
∥∥∥xl − xφk∥∥∥2 /σ2

)
, which can be viewed as

the similarity between bag B and xφk . xl is the l-th instance in the bag B, xφk is
the instance used for mapping and m is the number of it. The m most discrimina-
tive instances used for mapping make up a collection,which called discriminative

instance pool (DIP): P =
{
xφ1 , · · · ,xφm

}
,xφk ∈

[
BN

′
, BU

′
]
, where xφk is the

k-th element in P. The strategy of processing NU data by DIP is similar to the
idea in MILDM [18]. We can map a bag into single instance by the DIP. In order
to find the m instances that make the mapped samples most separable, denote
J (P) as objective function:

J (P) =
1

2

∑
i,j

KP (Bi, Bj)Qi,j , Qi,j =

{
−1/|A|, yiyj = 1;
1/|B|, yiyj = −1,

(5)

where KP (Bi, Bj) denotes the distance between Bi and Bj after being mapped,
Qi,j is weight factor, | · | is the number of elements in the set, and yi, yj are the
labels of Bi and Bj , respectively. A and B are denoted as:

A = {(i, j) | yiyj = 1} , B = {(i, j) | yiyj = −1} . (6)

By optimizing J (P), the goal of minimizing the distance between samples
from same category and maximizing the distance between different ones’ can
be directly achieved. The function KP (Bi, Bj) is used to describe the distance
between Bi and Bj denoted as:

KP (Bi, Bj) =
∥∥∥Bφi −Bφj ∥∥∥2 =

∥∥∥IPBφxi − IPBφxj ∥∥∥2, (7)

where IP denotes a diagonal matrix, if xk belongs to the discriminative instance
pool, the k-th diagonal element in IP is 1, otherwise it is 0. Based on IP , we can
choose mapped features by discriminative instance pool from all the instances.

To sum up, when maximizing J (P), we diminish the distances between in-
stances from same class of bags and enlarge distances between different classes
instances. So our next target is maximizing J (P) to get P∗ :

P∗ = arg maxJ (P), s.t. |P| = m. (8)

Let Xφ = [Bφx1 , · · · , Bφxn ] = [φ1, · · · , φp]> and n = |DN ′ |+ |DP ′ |. L = D−Q
is a Laplacian matrix, where diagonal matrix D satisfy Di,i =

∑
j Qij . J (P)

can be rewritten as:

J (P) =
1

2

∑
i,j

∥∥∥IPBφxi − IPBφxj ∥∥∥2Qi,j
=
∑
i

(
Bφxi

)>
I>P IPB

φx
i Di,i −

∑
i,j

(
Bφxi

)>
I>P IPB

φx
j Qi,j

= tr
(
I>PXφLX>φ IP

)
=
∑
xφk∈P

φ>k Lφk.

(9)
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Let φ>k Lφk = f(xφk , L) , the optimal DIP (8) is equivalent to:

P∗ = arg max
∑
xφk∈P

f(xφk , L), s.t. |P| = m. (10)

Since P∗ is composed of the function f(xφk , L) of all instances xk in dataset,
we can optimize P by the searching algorithm. Under the premise of satisfying
the constraints, update f(xφk , L) one by one and iterate P. Through each itera-

tion, instance xmin corresponding to the minimum value of f(xφmin, L) will be
removed. The iteration ends until all instances have been traversed.

Now we have two kinds of mapped features based on different rules: statistic
rule Φ3m(B) and discriminative instance pool rule ΦDIP (B), which two are
complementary to each other. The combination of two mappings is defined as

Φcps(B) := [Φ3m(B),ΦDIP (B)]. (11)

Composite mapping Φcps(B) describe the characteristics of the bag from
both statistical features and discriminative features, so that the mapped results
can better help the next step of NU classification.

2.2 NU Classification Based on Composite mapping

By the mapping rule in Eq.(11), bags in datasets DN and DU can be mapped
to single instances. The next step is to get the classifier by constructing the
NU loss function. For more convenient representation, we write mapped sample
Φcps(B) as ϕ. In particular, Φcps(B

N
i ) and Φcps(B

U
j ) are denoted as ϕNi and

ϕUj , respectively. Classifier g(ϕ) is a linear parametric model:

g(ϕ) = ω>ϕ+ b. (12)

On the basis of all the samples in dataset are independent and identically
distributed with probability p(ϕ, y), we intend to train a classifier based on
minimizing the empirical risk loss on the training dataset. The loss function
is composed of the expectation over risk loss of positive and negative data.
However, labels for positive class are inexistent in NU dataset, which means
the positive part in loss function is not directly available. In order to train a
classifier by only negative and unlabeled data, the risk loss in positive samples
can be estimated by negative and unlabeled samples:

θPEP [l(g(ϕ)] = EU [l(g(ϕ))]− θNEN [l(g(ϕ))], (13)

where θP and θN denote the class-prior probabilities of the positive and negative
class, θP + θN = 1. g(ϕ) is the classifier and l(z) is a loss function. EP [·] and
EN [·] are the expectations over the prior distribution on positive and negative
data. Inspired by the similar formulation proposed in [16], specifically, we use
loss function R(g) drawn from NU data by the risk:

R(g) =θPEP [l(g(ϕ))] + θNEN [l(−g(ϕ))]

=θNEN [l̃(−g(ϕ))] + EU [l(g(ϕ))],
(14)
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Algorithm 1 Multiple Instance learning for Unilateral Data (MILUD)

Input: negative dataset DN and unlabeled dataset DU

Output: The classifier (ω, b) for Multiple Instance Data

1: Calculate the statistic s3m(BN(U)) by Eq.(1);

2: Compute the set kernel k̃3m(BN(U), C) by Eq.(2);

3: Learn a fake label by Eq. (3) and Eq.(15), DU = {DUP , DUN};
4: Search the optimal DIP set P∗ by solving the problem in (10);

5: Compute the feature ϕ by concatenating Φ3m(B) and ΦDIP (B) in Eq.(11);

6: Learn the optimal NU classifier (ω, b) by optimizing Eq.(16).

7: return the optimal model (ω, b).

where l̃(z) = l(z)− l(−z) is a composite loss function.
When l̃(z) satisfies the condition of l̃(z) = l(z)− l(−z) = −z, the minimiza-

tion of NU loss function Eq.(14) is a convex optimization problem. In this paper,
we choose double hinge loss lDH(z) = max(−z,max(0, 12 −

1
2z)) as l(z). R(g) in

Eq.(14) is rewritten as:

R(g) =θNEN [g(ϕN )] + EU [l(g(ϕU ))]

=
θN
Nn

Nn∑
i=1

ω>ϕNi + θNb+
λ

2
ω>ω +

1

Nu

Nu∑
j

lDH(ω>ϕUj + b)
(15)

where ω>ω is the regularization item, λ is the parameter used to adjust ω>ω.
The optimization in Eq.(15) can be rewritten with the slack variable ξ, which is
used to bound the max operators:

min
ω,b,ξ

θN
Nn

1>ϕNi ω + θNb+ 1
Nu

1>ξ + λ
2ω
>ω

s.t. ξ ≥ 0, ξ ≥ −ϕUj ω − b1,
ξ ≥ 1

21− 1
2ϕ

U
j ω − 1

2b1.

(16)

The problem in Eq.(16) is a quadratic program, which can be solved by in-
terior point method. Interior point method transforms constrained optimization
problem into unconstrained optimization problem by adding an obstacle function
to the original target function, the original constraints will be replaced. Then
the unconstrained optimization problem would be solved by Newton’s method.
By optimizing Eq.(16), we get the final classifier g. The main steps of MILUD
are shown in Algorithm 1.

2.3 Analysis of Generalization Error Bounds

Similar to [16], we analyze the upper bound of generalization error for g. Denote
H as the domain set, Cω and Cϕ are certain positive constants. Define G ={
g(ϕ) = ω>ϕ | ‖ω‖ ≤ Cω, supϕ∈H ‖ϕ‖ ≤ Cϕ

}
as function class. The expected
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risk R(g) and empirical risk R̂(g) of classifier can be written as:

R(g) = θNEp(ϕ|y=−1)[g(ϕ)] + Ep(ϕ)[`DH(g(ϕ))],

R̂(g) =
θN
Nn

Nn∑
u=1

g
(
ϕNu
)

+
1

Nu

Nu∑
v=1

`
(
g
(
ϕUv
))
.

(17)

Theorem 1. For any fixed g and any δ ∈ (0, 1), the difference between R(g)

and R̂ satisfies:

R(g)− R̂(g) ≤
√
C2
ωC

2
ϕ log

2

δ
/2

(
2θN√
Nn

+
1√
Nu

)
. (18)

The details of this proof is presented in the supplemental file. The results of
this theorem indicates that the generalization error of our model decreases with
the increase of

√
Nn and

√
Nu. In other words, increasing the number of negative

and unlabeled bags can reduce the error and improve the performance of our
method. The conclusion of this proof is also verified by experimental results.
both contributes to reducing the error.

3 Experiments

3.1 Experiment Settings

To verify the superiority of our approach, we compare MILUD with four classi-
cal methods, including C-kNN [17], aMILGDM [18], KISVM [15] and PU-SKC
[3]. The first three are proposed to solve the problem with complete data and
balanced labels. PU-SKC is one representative of PU-MIL, which train the clas-
sifier via concise statistical mapping and PU empirical risk loss. We take the
experiments on eight public datasets, i.e. Corel bm, Corel hd, Sival ab, Sival bc,
Atoms, Bonds, Elephant and Tiger. The specific information of these datasets
is shown in Table 1.

Since these datasets in Table 1 are too small to evaluate NU or PU meth-
ods, similar with [3], we augment the information of datasets by increasing the
number of bags. Specifically, we randomly select bags from original dataset and
duplicate them with the Gaussian noise of mean zero and variance 0.01. In this
way, we increase the number of negative and unlabeled bags to 20 and 180, re-
spectively. The remaining 100 positive bags and 100 negative bags are test set. In
addition, we take comparative experiments to verify the effectiveness of MILUD
under different unlabeled bags composition. The ratio of negative bags in unla-
beled bags are set as {0.1,0.3,0.5,0.7}. Finally, we repeat 30 times experiments
and report the mean value of each method under different classification metrics.

3.2 Results

Classification Performance We compared the performance of MILUD and
other four state-of-the-art approaches on eight datasets. The classification accu-
racy, area under the curve (AUC) and F-measure are adopted to evaluated their



Multiple Instance Learning for Unilateral Data 9

Table 1. The main information of eight public dataset.

Name # of Pos Bags # of Neg Bags Features Avg # of Insts
Corel bm 100 100 9 3.46
Corel hd 100 100 9 3.85
Sival ab 60 60 30 31.68
Sival bc 60 60 30 31.78
Atoms 125 63 10 8.61
Bonds 125 63 16 21.25

Elephant 100 100 230 6.96
Tiger 100 100 230 6.10

performance. Under the four different class-prior probability θN of {0.1,0.3,0.5,0.7},
the average classification accuracy and standard deviation of 30 independent tri-
als of different methods are presented in Table 2.

Table 2. Average classification accuracy (standard deviation) of different compared
methods on eight public datasets. The first highest score is in bold.

Dataset θN
Accuracy

MILUD PU-SKC C-kNN aMILGDM KI-SVM

Corel bm

0.1 0.694(0.048) 0.571(0.075) 0.665(0.032) 0.647(0.031) 0.630(0.041)
0.3 0.662(0.040) 0.608(0.053) 0.592(0.024) 0.600(0.032) 0.556(0.035)
0.5 0.602(0.067) 0.589(0.060) 0.560(0.025) 0.567(0.029) 0.528(0.035)
0.7 0.562(0.059) 0.524(0.044) 0.542(0.023) 0.546(0.016) 0.538(0.050)

Corel hd

0.1 0.839(0.034) 0.74210.064) 0.776(0.041) 0.701(0.034) 0.602(0.070)
0.3 0.866(0.031) 0.821(0.031) 0.662(0.036) 0.617(0.032) 0.588(0.103)
0.5 0.845(0.036) 0.794(0.061) 0.611(0.025) 0.583(0.025) 0.572(0.053)
0.7 0.774(0.082) 0.689(0.081) 0.560(0.023) 0.555(0.029) 0.703(0.049)

Sival ab

0.1 0.773(0.048) 0.740(0.043) 0.699(0.034) 0.689(0.032) 0.763(0.046)
0.3 0.733(0.050) 0.711(0.050) 0.631(0.031) 0.612(0.028) 0.523(0.059)
0.5 0.719(0.057) 0.705(0.054) 0.579(0.028) 0.575(0.020) 0.524(0.076)
0.7 0.654(0.054) 0.607(0.070) 0.565(0.026) 0.562(0.029) 0.515(0.072)

Sival bc

0.1 0.875(0.038) 0.808(0.041) 0.747(0.035) 0.754(0.040) 0.860(0.036)
0.3 0.883(0.035) 0.825(0.033) 0.643(0.030) 0.626(0.026) 0.680(0.038)
0.5 0.823(0.068) 0.797(0.068) 0.599(0.035) 0.585(0.025) 0.683(0.076)
0.7 0.742(0.090) 0.728(0.077) 0.569(0.037) 0.567(0.027) 0.659(0.036)

Atoms

0.1 0.6017(0.051) 0.525(0.029) 0.517(0.022) 0.605(0.036) 0.623(0.047)
0.3 0.671(0.047) 0.576(0.043) 0.508(0.027) 0.572(0.029) 0.564(0.040)
0.5 0.660(0.055) 0.556(0.052) 0.502(0.022) 0.549(0.028) 0.599(0.036)
0.7 0.574(0.097) 0.524(0.054) 0.506(0.023) 0.523(0.023) 0.555(0.023)

Bonds

0.1 0.616(0.063) 0.520(0.058) 0.527(0.024) 0.605(0.039) 0.559(0.074)
0.3 0.620(0.048) 0.601(0.057) 0.523(0.021) 0.551(0.023) 0.642(0.040)
0.5 0.572(0.076) 0.572(0.063) 0.523(0.018) 0.543(0.026) 0.530(0.024)
0.7 0.608(0.074) 0.564(0.063) 0.511(0.020) 0.523(0.023) 0.539(0.026)

Elephant

0.1 0.785(0.041) 0.788(0.043) 0.691(0.034) 0.658(0.034) 0.677(0.064)
0.3 0.779(0.057) 0.752(0.069) 0.634(0.000) 0.601(0.025) 0.682(0.053)
0.5 0.749(0.060) 0.730(0.049) 0.586(0.032) 0.566(0.019) 0.676(0.065)
0.7 0.647(0.059) 0.643(0.060) 0.563(0.026) 0.552(0.024) 0.653(0.062)

Tiger

0.1 0.714(0.050) 0.712(0.056) 0.699(0.033) 0.665(0.044) 0.579(0.035)
0.3 0.739(0.056) 0.728(0.058) 0.630(0.034) 0.595(0.023) 0.558(0.041)
0.5 0.688(0.042) 0.676(0.046) 0.569(0.028) 0.565(0.024) 0.531(0.025)
0.7 0.591(0.063) 0.587(0.064) 0.547(0.021) 0.551(0.021) 0.499(0.086)
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(d) Corel hd

Fig. 1. The results of AUC and F-measure on four datasets. The first line are the AUC
of Sival ab and Corel bm, the second line are the F-measure of Sival bc and Corel hd.

We also provide the AUC and F-measure results on Sival ab, Corel bm,
Sival bc and Corel hd in Fig.1. The results in Table 2 and Fig.1 present that the
performance of our MILUD is better than other methods in most of cases and
simultaneously verify the effectiveness of our proposed method.

Effect of Mapping Combination To verify the validity of our mapping com-
bination, we conduct experiments on three datasets Atoms, Bonds and Sival ab
with different class-prior probability θN . We compare the NU empirical risk min-
imization classifier over three mapping rules, included the composite mapping
Φcps employed in MILUDM, statistical feature mapping Φ3m and discriminative
feature mapping ΦDIP . It should be noted that the ΦDIP makes negative and
unlabeled samples far away directly without fake-label strategy. Experiment re-
sults in Fig.(2) are the accuracy and standard deviation on three mapping rules,
which illustrates that the mapping combination improves the classifier perfor-
mance by making up the shortcomings of extracting information unilaterally.

Impact of Negative & Unlabeled Data Increasing To explore the impact
of unlabeled and negative data size on MILUD, we take two experiments with
increase of unlabeled or negative bags on Atoms, Elephant and Sival ab. Specifi-
clly, we randomly select 20 negative and 10 unlabeled samples as initial training
set. Then increase the number of unlabeled or negative samples of training set
and observe the tendency of classification performance. As seen from the accu-
racy results in Fig. 3, performance of MILUD becomes better with the increase
of two types of bags. The results verify that our method can be effective to utilize
the information of unlabeled data to improve the performance of our model.
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(c) Sival ab

Fig. 2. The result of accuracy and standard deviation on three mapping strategy on
three datasets Atoms, Bonds and Sival ab. Each figure contains the results on four θN .
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(e) Elephant
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Fig. 3. The change trend of accuracy when the number of U/L bags increases at four
class prior. The first line are the accuracy of increasing unlabeled bags, the second line
are the accuracy of increasing L bags.

4 Conclusion

In this paper, we focus on an important but unheeded NU-MIL problem, and
propose a two-stages method named MILUD to solve it. The composite map-
ping utilizes both data based statistical features and label based discriminative
mapping information, which ensure that the information of bags can be fully
preserved. Then, a convex learning model is derived by minimizing the empiri-
cal loss to solve the NU problem. Experimental results on eight public datasets
indicate our method outperforms other compared methods in most of cases.
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