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a b s t r a c t 

Dropout plays an important role in improving the generalization ability in deep learning. However, the 

empirical and fixed choice of dropout rates in traditional dropout strategies may increase the generaliza- 

tion gap, which is counter to one of the principle aims of dropout. To handle this problem, in this paper, 

we propose a novel dropout method. By the theoretical analysis of Dropout Rademacher Complexity, we 

first prove that the generalization gap of a deep model is bounded by a constraint function related to 

dropout rates. Meanwhile, we derive a closed form solution via optimizing the constraint function, which 

is a distribution estimation of dropout rates. Based on the closed form solution, a lightweight complex- 

ity algorithm called Rademacher Dropout (RadDropout) is presented to achieve the adaptive adjustment 

of dropout rates. Moreover, as a verification of the effectiveness of our proposed method, the extensive 

experimental results on benchmark datasets show that RadDropout achieves improvement of both con- 

vergence rate and prediction accuracy. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

m  

c  

n  

w  

b  

q  

d  

p  

o

t  

w  

r  

R  

w

t

 

n  

n  

p  

B  

n  

e  

t  

t  

p  

a  

u  

d  

i  

i

 

t  

c  

D  

f  

m  

[  

[  

l  

W  

h

0

. Introduction 

Deep learning has achieved great success in a number of do-

ains, such as the image processing [1,2] , text analysis [3] , and

ontrol fields [4] . However, the excessive feature learning by deep

eural networks (DNNs) might lead to the overfitting phenomenon,

hich reduces the generalization ability of deep models. Motivated

y Kerkar et al. [5,6] , the generalization ability of DNNs can be

uantitatively measured by the generalization gap, which is the

ifference between the empirical risk (training error) and the ex-

ected risk (generalization error). Moreover, the generalization gap

f DNNs [7] can be formulated as 

he generalization gap � | R exp − R emp | , (1)

here R exp and R emp represent the expected risk and the empirical

isk of deep models, respectively. Once a deep model is overfitting,

 exp will be much larger than R emp and its generalization gap is

ritten as 

he generalization gap = R exp − R emp . (2) 

To enhance the generalization ability of DNNs, various tech-

iques have been developed, such as ensemble learning [8] , batch

ormalization (BN) [9] , and dropout [10,11] . Ensemble learning
∗ Corresponding author. 
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revents overfitting via a combination of multiple classifiers [12] .

N was proposed to reduce the internal covariate shift through the

ormalization operations on the batches of each layer. However,

nsemble learning requires expensive computational resources and

he performance of BN depends on the batch-size [9] . To improve

he generalization ability of DNNs stably and efficiently, in this pa-

er, we focus on studying dropout for its simplicity and remark-

ble effectiveness. Dropout is one of the most widely adopted reg-

larization approaches in deep learning [13–16] . The strategy of

ropout is to randomly drop neurons within one layer while train-

ng DNNs [10] . Then, the generalization ability of a deep model is

mproved by breaking the fixed combination of features. 

Despite its empirical success, current theoretical analysis of

he dropout technique remains rudimentary and vague [17] . This

an be explained by the fact that the fundamental theory of the

NN still remains a riddle, which is called ‘Black Box’ [18] . There-

ore, the effectiveness of dropout mechanism can only be esti-

ated from some existing techniques, such as Bayesian theory

19] , optimization analysis [20] , and statistic generalization bound

21,22] . For linear models, dropout training originally was ana-

yzed as ensemble learning in shallow networks [11] . Moreover,

arde-Farley et al. [16] verified the effectiveness of the geometric

verage approximation, which combines the training results from

ultiple sub-networks. Motivated by norm regularization theory,

ager et al. [23] analyzed, for generalized linear models, that

ropout is the first-order equivalent to an � 2 regularizer. For deep

https://doi.org/10.1016/j.neucom.2019.05.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.008&domain=pdf
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models, Gal et al. [19,24] proposed probabilistic interpretations for

drop training, which proved that DNNs trained with dropout are

mathematically equivalent to an approximation to a well-known

Bayesian model. Recently, a battery of studies has emerged that

attempt to explain dropout training by risk bound analysis and

Rademacher Complexity [25] . Unlike those data-independent com-

plexities, Rademacher Complexity can attain a much more compact

generalization representation [26] . For DNNs trained with dropout,

Mou et al. [17] derived that the generalization error is bounded

by the sum of two offset Rademacher Complexities. Gao et al.

[21] developed Rademacher Complexity into Dropout Rademacher

Complexity and obtained a compact estimation of the expected

risk. 

Although the theoretical analysis is still vague, empirical ex-

periments show that the effect of dropout is intrinsically related

to the choice of dropout rates [20] . For convenience, the tradi-

tional dropout method made an assumption that the distribution

of dropout rates obeys the Binomial Bernoulli distribution. Based

on this viewpoint, traditional dropout decides the value of dropout

rates empirically, which sets the value of dropout rates by some

rule-of-thumb [10,11] . Meanwhile, the traditional dropout method

treats each neuron in one layer equally, where each neuron shares

the same dropout rates. However, different neurons represent dif-

ferent features and they contribute to the prediction to different

extents [20,27] . Combining the aforementioned insights, there is

still room to improve traditional dropout method by adaptively

choosing dropout rates for DNNs. 

To improve the generalization performance of DNNs, a num-

ber of variants of dropout are proposed to design adaptive mecha-

nisms for the update of dropout rates. From the probabilistic view-

point, the variants of dropout mainly concentrated on studying the

distribution of dropout rates. Some researchers assumed that the

dropout rates obey the specific distribution as a prior [10,20,27] .

For example, Ba et al. [27] held that dropout rates obey the bi-

nomial Bernoulli distribution and constructed a binary belief net-

work over the DNNs, which generates the dropout rates adaptively

by minimizing the energy function. However, the additional bi-

nary belief network will result in more computational overhead

when the model size increases. Moreover, Li et al. [20] sampled

dropout rates from a prior multinomial distribution and proposed

an evolutionary dropout via risk bound analysis for optimization of

a Stochastic Gradient Descent (SGD) learning algorithm [28] . Aside

from assuming the prior distribution, another category of dropout

variants attempts to estimate the distribution of dropout rates

via some optimization framework [17,19,22,24,29,30] . Based on the

Bayesian optimization framework, a variety of dropout methods

were proposed [19,24,30,31] . Based on deep Bayesian learning, Gal

et al. [29] proposed “concrete dropout” to give improved per-

formance and better calibrated uncertainties. Through variational

Bayesian inference theory, Kingma et al. [30] explored an extended

version of Gaussion dropout called “variational dropout” with lo-

cal re-parameterization. Recently, an increasing number of stud-

ies have tried to estimate the distribution of dropout rates via

risk bound optimization [17,22] . Through Rademacher Complexity,

Zhai et al. [22] proposed an adaptive dropout regularizer on the

objective function. It is worth noting that our research is funda-

mentally different from their work, in that they take the term of

Rademacher Complexity as the regularizer on the objective func-

tion of DNNs and we utilize Rademacher Complexity to estimate

and optimize the generalization gap. 

In this paper, we propose a novel method to achieve the adap-

tive adjustment of dropout rates with low computational complex-

ity. In fact, estimating the distribution of dropout rates directly is

a challenging task as a grid search over a large amount of hyper

parameters [22] . As an alternative, we attempt to estimate the dis-

tribution of dropout rates via optimizing the generalization gap.
nspired by the estimation of Gao et al. [21] , we first prove that

he generalization gap of DNNs trained with dropout is bounded

y a constraint function related to dropout rates. Subsequently, to

ptimize the generalization gap, we minimize the constraint func-

ion by a theoretical derivation. As a result, we obtain a closed-

orm solution in the optimization process, in which the solu-

ion represents a distribution estimation of the dropout rates. This

olution provides an efficient and concise approach to calculate

ropout rates by the batch inputs of the dropout layer. Finally, we

ropose an adaptive algorithm called Rademacher Dropout (Rad-

ropout) based on the closed-form solution. The algorithm gen-

rates the dropout rates adaptively during feed-forward propaga-

ion and requires only lightweight complexity. To further justify

ur method, we conduct several experiments on five benchmark

atasets: MNIST, SVHN, NORB, Cifar-100, and TinyImagenet. The

cope of the experiments includes a comparison of several tradi-

ional and state-of-art dropout approaches. The experimental re-

ults illustrate that RadDropout improves both on convergence rate

nd prediction accuracy. 

The main contributions of this paper as follows: 

• We first prove that the generalization gap of DNNs trained with

dropout is bounded by a constraint function related to dropout

rates. 

• We optimize the generalization gap by a theoretical derivation.

Meanwhile, we obtain a closed-form solution as an distribution

estimation of dropout rates. 

• We propose RadDropout as a novel dropout algorithm based

on our solution, which achieves adaptive adjustment of dropout

rates with lightweight complexity. 

The reminder of this paper is organized as follows. In Section 2 ,

e present some preliminaries. In Section 3 , we detail theoretical

erivations and the proposed adaptive algorithm, RadDropout. We

resent the experimental results on five datasets in Section 4 and

raw conclusions in Section 5 . 

. Preliminaries 

.1. Expression of DNN 

Here, we give the expression of the structure of a fully con-

ected network: 

• The deep network is composed of L hidden layers:

{ h 1 , h 2 , . . . , h L } and layer h i has N i neurons ( N L +1 = 1 ). 

• The weights between layer h i and layer h i +1 are W 

i , where W 

i ∈
R 

N i ×N i +1 (1 ≤ i ≤ L ). Moreover, W 

i = { W 

i 
1 
, W 

i 
2 
, . . . , W 

i 
N i +1 

} , where

W 

i 
j 
∈ R 

N i ×1 ( 1 < = j < = N i ). 

• The dropout operation can be considered as a element-wise

product of the input vector and the bitmask vector, which is

generated by the dropout rates. Following Warde-Farley et al.

[16] , we use dropout masks to denote to the bitmask vector of

the dropout operation in this paper. The dropout masks and re-

lated dropout rates of layer h i are defined as q 

i = { q i 
1 
, . . . , q i 

N i 
}

and p 

i = { p i 
1 
, . . . , p i 

N i 
} . Here, q i 

j 
and p i 

j 
represent the dropout

mask and dropout rate of neuron j in layer h i , respectively. 

• The input of the network is defined as X = { ( x 1 , y 1 ) , ( x 2 , y 2 ) ,
. . . , ( x n , y n ) } and the output of the network is defined as

F (X , W , q ) , where n is the number of whole samples. For the

input of each layer, �i 
k 

is the k- th sample’s input of layer h i ,

where �i 
k 

= { �i 
k 
(1) , �i 

k 
(2) , . . . , �i 

k 
(N i ) } . Note that �0 

k 
= x k . 

• The activation function σ is a P -Lipschitz function throughout

this study, which includes the most commonly used activation

functions, e.g., sigmoid [32] , tanh [33] and relu [34] . Meanwhile,

l is the loss function. With bounded F ( X, W, q ) and y , loss func-

tions, including entropy loss and square loss, are both Lipschitz
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functions with the first arguments [21] . Different from the ac-

tivation function, we suppose that l is a D -Lipschitz function

with its first argument. In addition, we detail the definition of

Lipschitz function in Section 2.3 . 

For the convenience of later analysis, the expression of our

 -layer network is expressed in recursive form as in [21] . There-

ore the output of the network for the j th sample is defined as

 ( X, W, q ) j : 

 (X , W , q ) j = W 

L · �L 
k , (3)

ust as the k th sample’s input of h i , �
i 
k 

can be written as 

�i 
k = { σ (W 

i −1 
1 · (�i −1 

k 
◦ q 

i −1 ) ) . . . , σ ( W 

i −1 
N i −1 

· ( �i −1 
k 

◦ q 

i −1 ) ) } , 
(4) 

here ◦ is an element-wise product operation. 

.2. Dropout training 

Dropout can be considered a kind of noise adding to input

uring training phase [11] . When we add dropout layer after the

 − th layer h i with K i neurons, the dropout operation can be writ-

en as 

 dropout (�
i 
k ) = q 

i ◦ �i 
k . (5)

With the drop rate p , each element of the mask vector in

idden i follows the distribution as follows: 

 

i 
j ∼ ˆ B (p i j ) (1 ≤ j ≤ N i ) . (6)

Here, a factor 1 
1 −p is multiplied with dropout mask and we use

ˆ 
 to refer the “scaled Bernoulli” distribution in [11] . Thus, the dis-

ribution of q 

i follows that for 1 ≤ j ≤ N i , P rob(q i 
j 
= 0) = p i 

j 
and

 rob(q i 
j 
= 

1 

1 −p i 
j 

) = 1 − p i 
j 
. Using a scaled dropout mask can ensure

hat E q [ �i ] = �i ; thus, we do not need to perform an extra scaling

peration for dropout training [11,20] . 

.3. Dropout Rademacher complexity 

As the data-independent complexity, Rademacher complexity 

an attain a much more compact generalization representation

35] . Based on Rademacher Complexity, Gao et al. [21] proposed

ropout Rademacher Complexity and provided a powerful theo-

etical tool for our analysis. Supposing that H is a real-valued

unction space, we now list the definition of Dropout Radmeacher

omplexity and related lemmas as follows: 

efinition 1 (Lispschitz Function) . In particular, a real-valued func-

ion f : R → R is called K -Lipschitz continuous if there exists a

ositive real constant K such that, for all real x 1 and x 2 , 

 f (x 1 ) − f (x 2 ) | ≤ K| x 1 − x 2 | . (7) 

oreover, a real-valued two variable function f ( x, t ) is called K -

ipschitz continuous with its first argument if there exists a posi-

ive real constant K such that, for all x 1 and x 2 , 

 f (x 1 , t) − f (x 2 , t) | ≤ K‖ x 1 − x 2 ‖ . (8) 

efinition 2 (Dropout Rademacher Complexity) . 

ˆ 
 n (H , X , q ) = E ε

[ 

sup 

h ∈ H 

1 

n 

n ∑ 

k =1 

εk h( x k , q ) 

] 

, (9)

 n (H ) = E x , q [ ˆ R n (H , X , q )] , (10)

here (9) and (10) are, respectively, called Empirical Dropout

ademacher Complexity and Dropout Rademacher Complexity.

oreover, { ε , . . . , εn } are referred to as Rademacher variables [21] .
1 
emma 1. Based on the function space H , we define abs (H ) =
 �αi h i : h i ∈ H } , where �αi = 1 . 

ˆ 
 n (H , x , q ) = 

ˆ R n ( abs (H ) , x , q ) . (11)

emma 2. Let H be a bounded real-valued function space from some

pace Z and z 1 , z 2 , . . . , z n ∈ Z . Let σ : R → R be a Lipschitz func-

ion with constant P and σ (0) = 0 . Then we have 

 ε

[ 

sup 

h ∈ H 

1 

n 

∑ 

k ∈ [ n ] 
εk σ (h(z k )) 

] 

≤ P E ε

[ 

sup 

h ∈ H 

1 

n 

∑ 

k ∈ [ n ] 
εk h(z k ) 

] 

. (12) 

emma 3. If l (., .) is a D-Lipschitz function with its first argument,

e have 

 n (l(F (X , W , q ) , y ))) ≤ D R n (F (X , W , q )) . (13)

emma 4. ( Estimation of generalization gap ) We define the em-

irical risk and expected risk for dropout as R emp and R exp , respec-

ively. Additionally, the loss function l is bounded with constant B and

ll training samples are i.d.d sampled. Then, the following inequality

olds with probability 1 − δ: 

 exp − R emp ≤ 2 R n (l(F (X , W , q ) , y )) + B 

√ 

ln (2 /δ) /n , (14)

here R exp − R emp is the generalization gap defined in (2) . 

emark. The proof and detailed analysis of formulas and lemmas

bove are given in [21] . Here, we only utilize them to further ana-

yze the generalization gap. 

. Rademacher dropout: optimization of generalization gap 

Before further analyzing the generalization gap, we emphasize a

upposition as a prior. For the convenience of derivation, here we

ake a supposition that only one hidden layer h s has a dropout

peration. Since the expression of DNN is in recursive form, the

ituation of dropout operation for one hidden layer can be easily

opularized to the multi-layer dropout. 

.1. Generalization gap constraint function 

Improving the generalization ability of DNNs is the fundamental

urpose of the dropout strategy. However, the generalization abil-

ty is too difficult to directly estimate without the real data dis-

ribution. Therefore, the generalization gap is defined as a quanti-

ative measurement, which formalizes the difference between the

mpirical risk and expected risk. In the research of Gao et al.

21] , the generalization gap is proved to be bounded by Dropout

ademacher Complexity in (14) . Based on their estimation, we

rove that the generalization gap is further bounded by a con-

traint function related to dropout rates q in Theorem 1 . 

heorem 1. Let W = { (W 

1 , W 

2 , . . . , W 

L ) } , and W 

i =
 W 

i 
1 
, W 

i 
2 
, . . . , W 

i 
N i +1 

} . Supposing that the 2-norm of every column of

 

s is bounded by a constant B s , we denote max j ‖ W 

s 
j 
‖ 

2 
≤ B s . More-

ver, the 1-norm of every column of W 

i (1 ≤ i ≤ L − 1) is bounded

y a constant C i , and we denote max j ‖ W 

i 
j 
‖ 

1 
≤ C i . For layer h L , let

 W 

L ‖ 1 ≤ C L . Note that W 

L is a vector here. Then, we have 

 n (l(F (X , W , q ) , y )) ≤ U(q ) , (15)

here U ( q ) is a constraint function: 

(q ) = DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

E x 

⎡ 

⎢ ⎣ 

√ √ √ √ E q 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

2 

⎤ 

⎥ ⎦ 

. (16)

roof. Instead of ˆ R n (l(F (X , W , q ) , y )) and R n (l(F (X , W , q ) , y )) ,

ere we use ˆ K (q ) and K ( q ) to express empirical Dropout
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Rademachder Complexity and Dropout Rademacher Complexity,

respectively. First, we estimate empirical Dropout Rademacher

Complexity ˆ K (q ) . Based on Lemma 3 in (13) , we have 

ˆ K (q ) = 

ˆ R n (l(F (X , W , q ) , y )) ≤ D ̂

 R n (F (X , W , q )) . 

According to the definition of the empirical Dropout

Rademachder Complexity in (9) and the expression of the DNN in

(3) and (4) , we have 

ˆ K (q ) ≤ D ̂

 R n (F (X , W , q )) 

= 

D 

n 

E ε

[ 

sup 

W 

L 

W 

L ·
( 

n ∑ 

k =1 

εk q 

L ◦ �L 
k 

) ] 

≤ DC L 
n 

E ε

[ 

sup 

W 

L 

W 

L 

‖ 

W 

L ‖ 1 

·
( 

n ∑ 

k =1 

εk q 

L ◦ �L 
k 

) ] 

. 

Based on Lemma 1 in (11) , we consider 
W 

L 
i ‖ W 

L ‖ 1 as αi and obtain

inequalities as follows: 

ˆ K (q ) ≤ DC L 
n 

E ε

[ 

sup 

W 

L −1 
1 

n ∑ 

k =1 

εk q 
L 
1 σ

(
W 

L −1 
1 ·

(
q 

L −1 ◦ �L −1 
k 

))] 

= 

DC L 
n 

E ε

[ 

sup 

W 

L −1 
1 

n ∑ 

k =1 

εk σ
(
W 

L −1 
1 ·

(
q 

L −1 ◦ q L 1 �
L −1 
k 

))] 

. 

Based on Lemma 2 in (12) , we then have 

ˆ K (q ) ≤ P 
DC L 

n 

E ε

[ 

sup 

W 

L −1 
1 

n ∑ 

k =1 

εk 

(
W 

L −1 
1 ·

(
q 

L −1 ◦ q L 1 �
L −1 
k 

))] 

= DP C L E ε

[ 

sup 

W 

L −1 
1 

W 

L −1 
1 ·

( 

1 

n 

n ∑ 

k =1 

εk q 

L −1 ◦ q L 1 �
L −1 
k 

) ] 

. 

Similarly, we can obtain the following inequalities in a similar

approach as before: 

ˆ K (q ) ≤ DP 2 C L C L −1 E ε

[ 

sup 

W 

L −2 
1 

W 

L −2 
1 ·

( 

1 

n 

n ∑ 

k =1 

εk q 

L −2 ◦ q L 1 q 
L −1 
1 �L −2 

k 

) ] 

≤ D 

P L −s 

n 

L ∏ 

m = s +1 

C m 

E ε

[ 

sup 

W 

s 
1 

W 

s 
1 ·

( 

n ∑ 

k =1 

εk q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 

) ] 

. 

From the Cauchy–Buniakowsky–Schwarz inequality, we have 

ˆ K (q ) ≤ DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

E ε

∥∥∥∥∥
n ∑ 

k =1 

εk q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 

∥∥∥∥∥
2 

. 

Combined with the property of Rademacher variables that

E εk 1 
εk 2 

εk 1 
εk 2 

= 0 f or k 1 	 = k 2 and E εk εk 
εk εk = 1 in [21] , the term

E(q ) = E ε
∥∥∑ n 

k =1 εk q 

s ◦ ∏ L 
r= s +1 q 

r 
1 �

s 
k 

∥∥
2 

can be expanded and simpli-

fied with Jensen’s inequality: 

E(q ) = E ε

( 

n ∑ 

k 1 =1 

n ∑ 

k 2 =1 

εk 1 εk 2 

( 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 1 

) 

·
( 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 2 

) ) 

1 
2 

≤
( 

n ∑ 

k 1 =1 

n ∑ 

k 2 =1 

E εk 1 
εk 2 

εk 1 εk 2 

( 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 1 

) 

·
( 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 2 

) ) 

1 
2 

= 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 

∥∥∥∥∥
2 

. 
Thus, K ( q ) can be simplified as follows: 

ˆ K (q ) ≤ DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦
L ∏ 

r= s +1 

q r 1 �
s 
k 

∥∥∥∥∥
2 

. 

Based on the prerequisite that only h s has a dropout operation,

e have that q r 
1 

= 1 holds for s + 1 ≤ r ≤ L . Therefore, we have 

ˆ K (q ) ≤ DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

. 

Finally, we estimate the Dropout Rademachder Complexity K ( q )

ased on (10) : 

K(q ) ≤ DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

E x , q 

⎡ 

⎢ ⎣ 

√ √ √ √ 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

2 

⎤ 

⎥ ⎦ 

. 

Based on Jensen’s inequality, we complete our proof and derive

he constraint function U ( q ): 

(q ) ≤ DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

E x 

⎡ 

⎢ ⎣ 

√ √ √ √ E q 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

2 

⎤ 

⎥ ⎦ 

= U(q ) . 

�

.2. Generalization gap optimization 

Based on Theorem 1 , the generalization gap can be bounded by

he constraint function U ( q ) based on (14) : 

 = R exp − R emp ≤ 2 U(q ) + B 

√ 

ln (2 /δ) /n , (17)

here G refers to the generalization gap and U ( q ) is given in

heorem 1 : 

(q ) = DB s 
P L −s 

n 

L ∏ 

m = s +1 

C m 

E x 

⎡ 

⎢ ⎣ 

√ √ √ √ E q 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

2 

⎤ 

⎥ ⎦ 

. (18)

In (17) and (18) , we give an upper-bound estimation of the gen-

ralization gap. The term B 
√ 

ln (2 /δ) /n can be considered a con-

tant and the generalization gap is indeed constrained by U ( q ).

herefore, we concentrate on minimizing U ( q ). In U ( q ), when the

istribution of input X is fixed, the monotonicity of E x [ L ] is the

ame as the monotonicity of L . Together with the conditions that

 s , P, n and C m 

are constants, we conclude that minimizing U ( q ) is

quivalent to minimizing the term 

ˆ U (q ) , where 

ˆ 
 (q ) = E q 

∥∥∥∥∥
n ∑ 

k =1 

q 

s ◦ �s 
k 

∥∥∥∥∥
2 

2 

. (19)

ote that q 

s and �s 
k 

are both vectors, with the element-wise prod-

ct operation ◦. Moreover, we use q s 
j 

and �s 
k 
( j) to represent the j-

h element of the two vectors, respectively. Now, ˆ U (q ) is expanded

s follows: 

ˆ 
 (q ) = E q 

∥∥∥∥∥q 

s ◦
n ∑ 

k =1 

�s 
k 

∥∥∥∥∥
2 

2 

= E q 

[ 

N s ∑ 

j=1 

( (
q s j 

)2 ∗
n ∑ 

k =1 

�s 
k ( j) 2 

) ] 

. 

Then, according to the property of the scaled-Bernoulli distri-

ution, we have 

 q [(q s j ) 
2 ] = (1 − p s j ) ∗

1 

(1 − p s 
j 
) 2 

+ p s j ∗ 0 = 

1 

1 − p s 
j 

. 
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1 http://yann.lecun.com/exdb/mnist/ 
2 https://cs.nyu.edu/ ∼ylclab/data/norb- v1.0- small/ 
3 http://ufldl.stanford.edu/housenumbers/ 
We let S( j) = 

√ ∑ n 
k =1 �

s 
k 
( j)) 2 in the following derivation for

onvenience. Therefore, the expression of ˆ U (q ) can be simplified

y a simple algebra: 

ˆ 
 (q ) = 

N s ∑ 

j=1 

(
E q [(q s j ) 

2 ] ∗ S( j) 2 
)

= 

N s ∑ 

j=1 

S( j) 2 

1 − p s 
j 

. 

Based on the variant of the Cauchy-Buniakowsky-Schwarz in-

quality, we further optimize the expression as follows: 

ˆ 
 (q ) ≥

(∑ N s 
j=1 

S( j) 
)2 

N s −
∑ N s 

j=1 
p s 

j 

. (20) 

The inequality (20) holds iff p 

s satisfies that 

S(1) 

1 − p s 
1 

= · · · = 

S(N s ) 

1 − p s 
N s 

= 

∑ N s 
j=1 

S( j) 

N s −
∑ N s 

j=1 
p s 

j 

. (21) 

To reach the minimum of ˆ U (q ) given in (20) , we let the con-

ition of the Cauchy-Buniakowsky-Schwarz inequality in (21) hold.

herefore, the equality in (20) holds as follows: 

in 

ˆ U (q ) = 

(∑ N s 
j=1 

S( j) 
)2 

N s −
∑ N s 

j=1 
p s 

j 

. (22) 

Moreover, in (22) , the monotonicity of the minimum of ˆ U (q )

s the same as 
∑ N s 

j=1 
p s 

j 
. Thus, minimizing ˆ U (q ) can be distilled to

inimizing 
∑ N s 

j=1 
p s 

j 
. Based on (21) , we have (23) by simple alge-

ra: 

p s i = 1 −
(
N s −

∑ N s 
j=1 

p s 
j 

)
∑ N s 

j=1 
S( j) 

S(i ) 1 ≤ i ≤ N s . (23)

Then, considering the condition that 0 ≤ p s 
i 
≤ 1 , we obtain the

inimum of 
∑ N s 

j=1 
p s 

j 
: 

in 

N s ∑ 

j=1 

p s j = N s −
∑ N s 

j=1 
S( j) 

max 
j 

S( j) 
. (24) 

Since the minimum of 
∑ N s 

j=1 
p s 

j 
is achieved, we can obtain the

inimum of ˆ U (q ) together with (24) and (22) : 

in 

ˆ U (q ) = max 
j 

S( j) ∗
N s ∑ 

j=1 

S( j) . (25) 

Finally, according to the correspondence between the mono-

onicity of ˆ U (q ) and U ( q ), we achieve the optimization of the gen-

ralization gap bound: 

 exp − R emp ≤ 2 U(q ) + B 

√ 

ln (2 /δ) /n , (26)

here U ( q ) is already minimized by the adaptive choice of dropout

ates q : 

(q ) = E x 

⎡ 

⎣ DB s 
P L −s 

n 

L ∏ 

i = s +1 

C i 

√ √ √ √ max 
j 

S( j) ∗
N s ∑ 

j=1 

S( j) 

⎤ 

⎦ . (27)

.3. Rademacher dropout: adaptive dropout algorithm 

Based on the previous derivation, an optimized bound of the

eneralization gap is achieved. This means that we optimize the

eneralization gap bound by assigning the appropriate values for

ropout rates p . Note that the achievement of the optimized risk
ound requires that the dropout rates p should satisfy the equali-

ies in (21) and (24) . Therefore, the dropout rates are obtained as

ollows: 

p s j = 1 −

√ ∑ n 
k =1 �

s 
k 
( j) 

2 

max 
j 

√ ∑ n 
k =1 �

s 
k 
( j) 

2 

1 ≤ j ≤ N s . (28)

We give a closed-form solution in (28) , which represents a dis-

ribution estimation of dropout rates p . Based on the closed-form

olution in (28) , we propose an adaptive dropout algorithm called

ademacher Dropout (RadDropout) that is outlined in Algorithm 1 .

Algorithm 1: Rademacher Dropout. 

Input : The batch size d, and the batch input of layer h s : 

�s = { �s 
1 
, . . . , �s 

d 
} , where �s 

k 
= (�s 

k 
(1) , ..., �s 

k 
(N s )) . 

Output : ˆ �s . 

for 1 ≤ j ≤ N s do 

S( j) ← 

√ ∑ d 
k =1 �

s 
k 
( j) 2 . 

end 

for 1 ≤ j ≤ N s do 

p s 
j 
← S( j) / max 

j 
S( j) . 

q s 
j 
← scal ed − Bernoul l i (p s 

j 
) . 

end 

for 1 ≤ k ≤ d do 

ˆ �s 
k 

← �s 
k 

◦ q 

s . 

end 

return 

ˆ �s = { ̂  �s 
1 
, . . . , ˆ �s 

d 
} . 

In Algorithm 1 , we use batch inputs as an approximation to cal-

ulate p for the convenience of implementation. In other words, we

alculate 

√ ∑ d 
k =1 �

s 
k 
( j) 2 instead of 

√ ∑ n 
k =1 �

s 
k 
( j) 2 . Therefore, Rad- 

ropout generates dropout rates p of layer h s only based on the

atch inputs �s , and this calculation can be completed through

he process of feed-forward propagation. Moreover, no extra hyper-

arameters are introduced by the proposed RadDropout and no ex-

ra tuning work is required. Overall, after the estimation and op-

imization of the generalization gap, we finally obtain the Rad-

ropout algorithm, which is designed as an adaptive and concise

echanism for the update of dropout rates. 

.4. Rademacher dropout: complexity analysis 

The RadDropout algorithm calculates dropout rates for layer h s 
sing the batch inputs �s . Therefore, the entire complexity of

he RadDropout algorithm is O( 2 N s d + 2 N s ) . Note that the dropout

ates are calculated in linear time with respect to N s , which indi-

ates that RadDropout is indeed a lightweight algorithm. 

. Experiment 

In this section, we first perform experiments to make a primary

alidation on the effectiveness of the proposed algorithm, namely

adDropout , on three benchmark datasets in the image recogni-

ion area: MNIST, 1 NORB, 2 and SVHN. 3 Then, we further verify

he proposed RadDropout on two comparatively large and complex

http://yann.lecun.com/exdb/mnist/
https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
http://ufldl.stanford.edu/housenumbers/


182 H. Wang, W. Yang and Z. Zhao et al. / Neurocomputing 357 (2019) 177–187 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Structure of deep network for MNIST. 

Layer type Input size Output size 

Fully connected 784 1024 

Fully connected 1024 1024 

Fully connected 1024 1024 

Fully connected 1024 10 

Table 2 

Training time (s) and classification accuracies (%) on 

MNIST dataset. Baseline in table means prediction ac- 

curacy of DNN trained without dropout. 

Approach Training time Prediction accuracy 

RadDropout 94.36 98.53 

ConDropout 96.38 98.51 

VarDropout 327.48 98.42 

EvoDropout 120.17 98.40 

TraDropout 93.93 98.37 

Baseline 86.09 98.21 
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datasets: Cifar-100 dataset 4 and TinyImagenet dataset. 5 Since the

two datasets contain more abundant class labels and object vari-

ations, their experimental results provide a more persuasive ver-

ification of the proposed method. All five datasets are commonly

adopted in most existing research, such as [20,23,29,36,37] . Mean-

while, we build a fully connected network for MNIST. For NORB

and SVHN, we choose simple network structures modified from

Lenet-5. 6 For Cifar-100 and TinyImagenet, we adopt the more com-

plex and widely applied VGG-16 [38] network. In the experiments,

we compare the performance of Rademacher Dropout ( RadDropout )

with several traditional and state-of-art approaches: 

• Concrete Dropout ( ConDropout ) [29] , which performs the min-

imization of the KL-divergence based on the deep Bayesian

Model. 

• Variational Dropout ( VarDropout ) [30] , which performs the eval-

uation of the posterior distribution via a novel parametric

model. 

• Evolutional Dropout ( EvoDropout ) [20] , which performs the risk

bound analysis of the SGD algorithm. 

• Traditional Dropout ( TraDropout ) [37] , which sets the same and

fixed dropout rates within one layer as the original dropout

strategy. 

In the training phase, we report the trend of training loss and

the training time of every approach to compare the convergence

rates on MNIST, NORB, and SVHN in the primary validation part.

Furthermore, we report the trend of recognition accuracy on the

validation dataset when training the Cifar-100 and TinyImagenet

datasets. In the testing phase, we compare the top prediction ac-

curacy of RadDropout with other approaches on the testing dataset

for MNIST, NORB, SVHN, and Cifar-100. Since the testing labels of

the TinyImagenet dataset are not open to the public, we report

the evaluation accuracy on its validation dataset as an alternative.

Note that we report the peak testing accuracy of every approach

[20] . In addition, for SVHN, NORB, Cifar-100 and TinyImagenet, we

add ConDropout and VarDropout after both the convolutional layers

and fully connected layers in view of their regularization mech-

anism. The other three methods, namely RadDropout, EvoDropout

and TraDropout , are added on the fully connected layers. This con-

figuration ensures a fair comparison for each method to achieve its

best performance. All of the experiments are implemented on the

tensorflow platform. 7 

4.1. MNIST dataset 

MNIST is a widely adopted dataset for classification tasks on

handwriting digits [39,40] . It is composed of 60,0 0 0 images, of

which 50,0 0 0 images are for training and the other 10,0 0 0 im-

ages are for testing. Each image is size-normalized and centered

in a fixed-size of 28 × 28. All of the images are classified into 1 of

10 classes. MNIST represents a baseline of the validation for most

deep-learning techniques [41–43] and here we first perform exper-

iments on MNIST to make a basic verification of our method. 

To achieve the classification task on MNIST, we build a fully

connected network with three hidden layers and each layer has

1,024 neurons. The activation function for each fully connected

layer is relu . The learning rate starts at 0.0 0 01 and the learning

algorithm applied in the network is RMSprop-Optimizer. The ini-

tialization of weight follows normal distribution with mean 0 and

standard deviation 0.01. In the training phase, we let the network

train for 40,0 0 0 steps with sufficient learning time. Following the
4 https://www.cs.toronto.edu/ ∼kriz/cifar.html 
5 http://tiny-imagenet.herokuapp.com/ 
6 http://yann.lecun.com/exdb/lenet/a35.html 
7 https://www.tensorflow.org 
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riginal implementations of each approach [20,29,30,37] , we add

adDropout, TraDropout and EvoDropout after the second fully con-

ected layer and apply VarDropout and ConDropout to each fully

onnected layer. Detailed structure information is given in Table 1 .

In the training phase, we report the training loss of each ap-

roach in the form of training curves to analyze the convergence

ate of the proposed RadDropout . For the reason that the trend

urves almost overlap between two approaches in the later stages,

e display only the first 1400 steps. As illustrated in Fig. 1 , the

urves show the remarkable improvement of the convergence rate

f the proposed method. This is probably because, compared with

ther approaches, the proposed method has a superior control on

he generalization gap with a compact upper-bound estimation.

herefore, the fluctuation of the training loss is decreased and the

onvergence process is accelerated. 

As analyzed previously, RadDropout has a lightweight complex-

ty that is in linear time with respect to the number of neurons in

he dropout layer. In Table 2 , we report the training time of each

pproach on MNIST as validation. Meanwhile, to test the general-

zation ability of RadDropout , we compare the prediction accuracy

f each approach on the MNIST dataset in Table 2 as well. 

As reported in Table 2 , we observe that RadDropout achieves a

igh prediction accuracy of 98.53% on the MNIST dataset, which

early equals that of the hand-tuned Traditional Dropout . Among

ther approaches, Concrete Dropout also achieves 98.51% as a de-

ired prediction accuracy. In fact, the baseline approach already

as a high prediction accuracy of 98% on the MNIST dataset.

owever, the three-layer fully connected network on the MNIST

ataset indeed has limited generalization ability and each increase

f 0.1% accuracy on the baseline represents an improvement. Thus

able 2 shows the improvement of the generalization ability of

adDropout . Additionally, Table 2 verifies the lightweight complex-

ty of RadDropout . As reported in Table 2 , RadDropout requires the

east time to train the MNIST dataset, namely 94.36 s. Other ap-

roaches, such as VarDropout and EvoDropout , consume much more

raining time. 

.2. NORB dataset 

Intended for experiments in three-dimensional object recogni-

ion, the small NORB normalized uniform dataset contains 24,300

raining examples and 24,300 testing examples [44] . The toy im-

ges in NORB can be divided into five categories. All of the

mages are resized as 96 × 96. Sampled by two images under

ix lighting conditions, NORB requires more meticulous feature

https://www.cs.toronto.edu/~kriz/cifar.html
http://tiny-imagenet.herokuapp.com/
http://yann.lecun.com/exdb/lenet/a35.html
https://www.tensorflow.org
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Fig. 1. Training loss on MNIST. This figure illustrates the trend of training loss on MNIST of RadDropout, TraDropout, ConDropout, EvoDropout and VarDropout . For ConDropout , 

we set the value of the weight-regularizer as 1e-6 and that of the dropout-regularizer as 1e-5. Here RadDropout converges to 0.2 as the training loss at the 100th step, while 

ConDropout and VarDropout require 200 and 500 steps, respectively, to converge to the same loss value. 
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Table 3 

Structure of deep network for NORB. 

Layer Type Input Padding Kernel Size/Num Output 

Convolution 96 ∗96 ∗2 SAME 5 ∗5/32 96 ∗96 ∗32 

Pooling 96 ∗96 ∗32 SAME(2 ∗2) 46 ∗46 ∗32 

Convolution 46 ∗46 ∗32 SAME 3 ∗3/64 4 4 ∗4 4 ∗64 

Pooling 4 4 ∗4 4 ∗64 SAME(2 ∗2) 22 ∗22 ∗64 

Fully Connected 30,976 1024 

Fully Connected 1024 5 
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earning. Therefore NORB is a more challenging classification task

han MNIST, and be used to test the robustness of our approach. 

For the NORB dataset, we design a modified six-layer deep net-

ork based on the structure of the Lenet-5 network. The network

s composed of two convolution layers, two pooling layers and two

ully connected layers. The learning rate is fixed at 0.0 0 01 and the

earning algorithm applied in the network is Adam-Optimizer. The

nitialization of weights follows normal distribution with mean 0

nd standard deviation 0.1. We train the NORB dataset for 50 0 0

teps for each approach. Among all of the approaches, ConDropout

nd VarDropout are applied into each convolutional and fully con-

ected layer [29,30] , whereas the other dropout approaches are

nly added to the first fully connected layer of the network. De-

ailed structure information is given in Table 3 . 

Since our network converges quickly on the NORB dataset, here

e display only the first 500 steps for sharper contrast. The train-

ng curves are presented in Fig. 2 . As shown in Fig. 2 , RadDropout

chieves superior performance on convergence rate compared with

ther approaches. This is probably due to the adaptive choice of
ig. 2. Training loss on NORB. This figure illustrates the trend of training loss on NORB o

e set the value of the weight-regularizer as 1e-6 and that of dropout-regularizer as 1e

econd best approach on NORB, EvoDropout requires 170 steps to arrive at 0.15 as the trai
ropout rates in RadDropout achieving a sharper constraint of the

eneralization gap. Thus, the training loss of RadDropout can avoid

etting stuck in a fixed local optimal. 

To test the generalization ability of RadDropout on NORB, we

est and compare the prediction accuracy of each dropout ap-

roach. As shown in Table 4 , RadDropout achieves the superior pre-

iction accuracy on NORB, namely 88.77%. The improved general-

zation ability on NORB of RadDropout verifies the robustness of
f RadDropout, TraDropout, ConDropout, EvoDropout and VarDropout . For ConDropout , 

-5. RadDropout achieves 0.15 as the training loss at around the 100th step. As the 

ning loss. 
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Table 4 

Training time (s) and classification accuracies (%) on 

NORB. Baseline means prediction accuracy of DNN 

trained without dropout. 

Approach Training time Prediction accuracy 

RadDropout 177.54 88.77 

ConDropout 308.46 84.99 

VarDropout 683.89 85.63 

EvoDropout 181.91 84.80 

TraDropout 175.94 84.32 

Baseline 170.47 81.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Structure of deep network for SVHN. 

Layer type Input Padding Kernel Size/Num Output 

Convolution 32 ∗32 ∗3 SAME 3 ∗3/32 32 ∗32 ∗32 

Convolution 32 ∗32 ∗32 SAME 3 ∗3/32 32 ∗32 ∗32 

Convolution 32 ∗32 ∗32 SAME 3 ∗3/32 32 ∗32 ∗32 

Pooling 32 ∗32 ∗32 SAME(2 ∗2) 16 ∗16 ∗32 

Convolution 16 ∗16 ∗32 SAME 3 ∗3/64 16 ∗16 ∗64 

Convolution 16 ∗16 ∗64 SAME 3 ∗3/64 16 ∗16 ∗64 

Convolution 16 ∗16 ∗64 SAME 3 ∗3/64 16 ∗16 ∗64 

Pooling 16 ∗16 ∗64 SAME(2 ∗2) 8 ∗8 ∗64 

Convolution 8 ∗8 ∗64 SAME 3 ∗3/128 8 ∗8 ∗128 

Convolution 8 ∗8 ∗128 SAME 3 ∗3/128 8 ∗8 ∗128 

Convolution 8 ∗8 ∗128 SAME 3 ∗3/128 8 ∗8 ∗128 

Pooling 8 ∗8 ∗128 SAME(2 ∗2) 4 ∗4 ∗128 

Fully Connected 2,048 512 

Fully Connected 512 128 

Fully Connected 128 10 

Table 6 

Training time (s) and classification accuracies (%) on 

SVHN. Baseline in table means prediction accuracy of 

DNN trained without dropout. 

Approach Training time Prediction accuracy 

RadDropout 353.37 93.12 

ConDropout 356.81 91.71 

VarDropout 520.34 90.85 

EvoDropout 361.63 89.79 

TraDropout 352.87 90.36 

Baseline 349.17 89.40 
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our proposed RadDropout . The improvement of prediction accuracy

is probably due to RadDropout constraining the generalization error

with a sharper upper-bound estimation of the generalization gap.

Additionally, the training time reported in Table 4 justifies that

RadDropout requires less training time than other dropout meth-

ods, except for Traditional Dropout . Here, Concrete Dropout requires

much more training time because it requires the collaboration of

the regularization of each layer. 

4.3. SVHN dataset 

As a real-world image dataset for developing machine learning

and object recognition algorithms, SVHN can be considered an im-

proved version of the MNIST dataset [45] . It contains 73,257 digit

images for training and 26,032 digit images for testing. All of the

digit images can be classified into 1 of 10 classes. For the reason

that SVHN is obtained as a subset of digits from Google StreetView

images, it is also a more challenging task than MNIST. Therefore,

we adopt the SVHN dataset to further validate the universality of

the proposed RadDropout . 

The digit images of SVHN have three channels and require more

advanced feature extraction. Thus, for the SVHN dataset, we de-

sign a more complicated network as a 14-layer network with 9

convolution layers, 3 pooling layers and 2 fully connected layers.

The learning rate starts at 0.0 0 01 and learning algorithm is Adam-

Optimizer. The initialization of weight follows normal distribution

with mean 0 and standard deviation 0.1. In the training phase, we

let SVHN learn for 18,0 0 0 steps. RadDropout, TraDropout and Evo-

Dropout are added after the first fully connected layer for the SVHN

dataset. VarDropout and ConDropout are applied to each convolu-
Fig. 3. Training loss on SVHN. This figure illustrates the trend of training loss on SVHN o

we set the value of the weight-regularizer as 1e-6 and that of the dropout-regularizer as

other approaches on SVHN. 
ional and fully connected layer. The detailed structure of the net-

ork is shown in Table 5 . 

Here, we display only the first 30 0 0 steps in the training phase

o facilitate a comparison of the convergence rates. As shown in

ig. 3 , RadDroput decreases the training loss at a much faster

peed than other approaches as well. Moreover, to verify the al-

orithm complexity and generalization ability of RadDropout , the

raining time and prediction accuracy for each approach on the

VHN dataset are reported in Table 6 . As shown in Table 6 , Rad-

ropout achieves the desired prediction accuracy compared with

ther approaches. Meanwhile, with the least training time shown

n Table 6 , we also further verify the efficiency of RadDropout .

herefore, the results on the SVHN dataset further justify the
f RadDropout, TraDropout, ConDropout, EvoDropout and VarDropout . For ConDropout , 

 1e-5. Blue curve implies that RadDropout achieves a faster convergence rate than 
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Fig. 4. Training results on Cifar-100 dataset with RadDropout, ConDropout, TraDropout, VarDropout , and EvoDropout . (a) Training loss and (b) validation accuracy on Cifar-100 

dataset. Here, we perform a smoothing operation on the loss curves and accuracy curves to facilitate comparison. 
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Table 7 

Testing acuracies (%) on Cifar-100 dataset 

with RadDropout, ConDropout, VarDropout, Evo- 

Dropout and TraDropout . Baseline means predic- 

tion accuracy of DNN trained without dropout. 

Approach Testing accuracy 

RadDropout 56.78 

ConDropout 52.82 

VarDropout 54.21 

EvoDropout 50.58 

TraDropout 48.97 

Baseline 47.81 

4

 

p  

e  

a  

e  

i  

t  

t  

o  

w  

o  

o  

i  

T  

w  

f

 

e  

A  

f  

w  

t  

s  

a  

s

8 http://www.image-net.org/ 
ffectiveness of RadDropout both on convergence rate and predic-

ion accuracy. 

.4. Cifar-100 dataset 

To test the effectiveness of the proposed RadDropout on large-

cale dataset with complex deep network structure, we fur-

her perform experiments on the Cifar-100 dataset. The Cifar-100

ataset consists of 60,0 0 0 32 × 32 color images in 100 classes, with

00 training images and 100 testing images per class. Since the

ifar-100 dataset contains more abundant classes of objects, it is

 challenging task to perform recognition tasks on it. Considering

he difficulty of the Cifar-100 dataset, we adopt the VGG-16 net-

ork with 13 convolution layers, five pooling layers and three fully

onnected layers. The detailed structure of VGG-16 net is available

n [38] and here we set the number of neurons of three fully con-

ected layers to 4096, 4096, and 100, respectively. For the Cifar-

00 dataset, RadDropout, TraDropout and EvoDropout are added af-

er the three fully connected layers. Meanwhile, VarDropout and

onDropout are applied to each convolutional and fully connected

ayer. For Cifar-100, the learning rate starts at 0.0 0 01 and the

earning algorithm is Adam-Optimizer. Here, we adopt the Xavier

nitialization method for each layer [33] . 

In the training phase, we report the training loss to test the

onvergence speed of RadDropout . Moreover, we randomly choose

atches from the testing dataset to comprise the validation dataset

nd report the trend of evaluation accuracy when training Cifar-

00. The total training step is 10 0,0 0 0 and we only report the

rst 80,0 0 0 steps to facilitate a comparison. As shown in Fig. 4 (a),

he proposed RadDropout reaches the convergence point at a much

aster speed compared to other methods. Moreover, we observe

rom Fig. 4 (b) that the validation accuracy of RadDropout also in-

reases at a much faster speed, which indicates that RadDropout

mproves the generalization ability of VGG-16 in an efficient ap-

roach. 

In the testing phase, we report the final testing accuracy of each

ethod on the Cifar-100 dataset with VGG-16 net. As shown in

able 7 , RadDropout achieves superior testing accuracy compared

o other state-of-the-art dropout methods. Specifically, RadDropout

chieves a higher accuracy than classical TraDropout, e.g., over 8%.

his is mainly attributed to the optimization of the generalization

ap by RadDropout . 
.5. TinyImagenet 

As a representative subset of Imagenet, 8 TinyImagenet is com-

rised of 120,0 0 0 64 × 64 images belonging to 200 categories, with

ach category having 500 training images, 50 validation images

nd 50 test images. The categories are synsets of the WordNet hi-

rarchy [46] , and the images are similar in spirit to the ImageNet

mages used in the ILSVRC benchmark [47] , but with lower resolu-

ion [48] . Since recognition on TinyImagenet is far more difficult

han in the other four datasets, we finally test the performance

f RadDropout on it. For TinyImagenet, we also adopt VGG-16 net

ith five dropout approaches and make a fair comparison with-

ut any other regularization methods. Here, we change the number

f neurons of three fully connected layers to 4096, 2048, and 200

n VGG-16. In a similar setting to Cifar-100, we add RadDropout,

raDropout and EvoDropout after the three fully connected layers,

ith VarDropout and ConDropout applied to each convolutional and

ully connected layer. 

We first report the training loss and validation accuracies of

ach dropout approach on the TinyImagenet dataset in Fig. 5 .

s shown in Fig. 5 (a) and (b), RadDropout has achieved much

aster convergence speed than other methods. In the testing phase,

e evaluate each method on the validation dataset as an al-

ernative, as the testing labels are not open to the public. As

hown in Table 8 , RadDropout still maintains an ideal evaluation

ccuracy and outperforms other methods when facing the large-

cale dataset. 

http://www.image-net.org/
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Fig. 5. Training results on TinyImagenet dataset with RadDropout, ConDropout, TraDropout, VarDropout , and EvoDropout . (a) Training loss and (b) validation accurracy on 

TinyImagenet dataset. Here, we perform a smoothing operation on the loss curves and accuracy curves to facilitate a comparison. 

Table 8 

Validation accuracies (%) on TinyImagenet 

dataset with RadDropout, ConDropout, 

VarDropout, EvoDropout and TraDropout . 

Baseline means prediction accuracy of DNN 

trained without dropout. 

Approach Validation accuracy 

RadDropout 51.86 

ConDropout 43.52 

VarDropout 45.87 

EvoDropout 50.21 

TraDropout 43.98 

Baseline 43.20 
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5. Conclusions 

In this paper, we propose a novel dropout method to achieve

the adaptive adjustment of dropout rates. Based on Dropout

Rademacher Complexity, we first prove that the generalization gap

is bounded by a constraint function related to dropout rates. By

a theoretical derivation, we minimize the constraint function and

derive a closed-form solution as the distribution estimation of

dropout rates. As a result, we propose an adaptive dropout algo-

rithm called Rademacher Dropout based on the closed-form so-

lution with a lightweight complexity. Experimental results on five

benchmark datasets verify that the proposed Rademacher Dropout

improves both the convergence rate and prediction accuracy. Fi-

nally, our study utilizes risk bound analysis to optimize the gen-

eralization gap, which provides a significant train of thought for

follow-on research. Our planned future work includes the further

validation on more challenging dataset (e.g., Imagenet [47] ), the

derivation of more compact bound estimation of the generalization

gap and development of more stable and accurate regularization

approaches. 
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