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The traditional manifold learning methods can preserve the local sub-manifold structure or the global
geometry effectively, such as elastic preserving projections (EPP). Many experimental results have been
shown that EPP, a recently developed linear algorithm, is a strong analyzer for high-dimensional data.
However, for classification problems, the traditional methods focused on the geometrical information

criminative orthogonal elastic preserving projections (DOEPP) by imposing the discriminant information
and the orthogonal constraint to improve its classification performance. DOEPP does not only preserve
the elasticity of the training set, but also sufficiently utilizes the discriminant information by adding
maximum margin criterion and the orthogonality of the projection matrix into its objective function.
Extensive experiments on two well-known synthetic manifold data sets and four publicly available
databases illustrate the effectiveness of our method.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In many real applications, with the development of information
acquiring technology, the raw data gathered from sensors are
often with very large dimensions. Large dimensions lead to diffi-
culty of data analysis and data mining [1–3], even cannot reveal
the hidden intrinsic structure of such data, besides many classifiers
perform poorly in a high-dimensional space given a small number
of training samples. And the direct process of the high dimen-
sional data is also computationally expensive. Dimensionality
reduction [4–8] is an effective way to solve these problems.

Over the last two decades, many algorithms have been developed
for dimensionality reduction. The most popular conventional meth-
ods are principal component analysis (PCA) [9], linear discriminant
analysis (LDA) [10] and maximum margin criterion (MMC) [11].
However, PCA, which finds the directions along the maximum var-
iance of samples, is probably the most popular dimensionality
reduction method. PCA is unsupervised and not suitable for classifi-
cation problems since it does not use prior knowledge of class
identities. Unlike PCA, LDA is supervised and finds the projection
directions by maximizing the trace of the between-class scatter
matrix SB while minimizing the trace of the within-class scatter
o),
(D. Yi),
matrix SW. But LDA requires SW which is non-singular during opti-
mizing its objective functions. While in practice, due to the curse of
dimensionality, while SW is always singular in practice. To solve this
problem, Li et al. [11] proposed maximum margin criterion (MMC)
which eliminates the effect of SW's singularity for the small size
samples (SSS) problem. It is well known that MMC is to maximize
the trace of the difference of between-class scatter matrix SB and
within-class scatter matrix SW which is viewed as a variant of LDA.
However, these three algorithms preserved only the global Euclidean
structure and cannot discover the nonlinear sub-manifold structure
underlying in the high-dimensional data.

Seung and Lee [12] presented that manifolds are fundamental
to perception. This implies that the population activity is con-
strained to lie on a low-dimensional manifold. Recently, a number
of manifold learning algorithms [13–18] have been developed to
excavate nonlinear sub-manifold structure lying on the observa-
tion space and to find out the low-dimensional and compact
embeddings of the high dimensional samples. Furthermore, these
manifold learning algorithms have been successfully applied into
palm recognition [19], face recognition [20], facial expression
recognition [21] and human gait recognition [22]. The most pop-
ular nonlinear manifold learning methods include ISOMAP [13],
locally linear embedding (LLE) [14], Laplacian eigenmaps (LE) [15],
Hessian LLE (HLLE) [16], local linear coordination (LLC) [17],
maximum variance unfolding (MVU) [18], and local tangent space
alignment (LTSA) [23]. ISOMAP, a variant of multidimensional
scaling (MDS) [24], preserved the global geodesic distances by
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Fig. 1. The process of dimensionality reduction.

Table 1
Important notations used in this paper.

Notation Description Notation Description

X The given data set xi ith sample of X
Y The embedding of X yi The embedding of xi
N Number of samples li The label of xi
D Dimension of the original

samples
U Projection matrix

d Reduced dimension SB Between-class scatter
matrix

f Mapping function SW Within-class scatter
matrix

Ξ Label set of α xi Control parameter
C Number of classes β Control parameter
Wl Weight matrix of local graph Wg Weight matrix of global

graph
RD D-dimensional Euclidean

space

Fig. 2. The process of MMC based on graph viewpoint.

T. Luo et al. / Neurocomputing 179 (2016) 54–68 55
computing shortest paths of all sample pairs. LLE first embedded
data points in a low dimensional space by finding the optimal
linear reconstruction coefficients in a small neighborhood to
represent the local geometry. LE preserved proximity relationships
on an undirected weighted graph, which indicates neighbor rela-
tions of pairwise samples. LTSA exploited the local tangent infor-
mation as a representation of the local geometry, and this local
tangent information is then aligned to provide a global coordinate.
Unfortunately, all of these methods suffer from the out-of-sample
problem [25] when the new samples are added.

To solve out-of-sample problem of nonlinear methods, He et al.
adopted a linearization procedure to construct explicit maps over
new samples and then proposed locality preserving projection (LPP)
[26] and neighborhood preserving embedding (NPE) [27], which are
the linearization of LLE and LE, respectively. LPP attempts to find the
embedding and the projection matrix U by preserving local struc-
tural information, while NPE computes U and the corresponding
embedding by preserving local neighborhood information. Unfor-
tunately, LPP and NPE are non-orthogonal, this makes them difficult
to reconstruct the data. In the recent research [28,29], Kokiopoulou
and Saad pointed out that enforcing an orthogonality relationship
between the projection directions is more effective for preserving
the intrinsic manifold of high dimensional data and then proposed
orthogonal neighborhood preserving projection (ONPP) [29] to
improve its performance. Based on this idea, Cai et al. [30] devel-
oped orthogonal LPP (OLPP) algorithm to produce orthogonal basis.
At the same time massive experiments have shown that OLPP and
ONPP have more locality preserving and discriminant power than
LPP and NPE, respectively.

To incorporate the advantages of both the local sub-manifold
structure and the global Euclidean information, Zang et al. [31]
proposed elastic preserving projections (EPP). However, they are
unsupervised in nature and fail to discover the discriminant
information samples from different classes. To improve the dis-
criminative power for classification tasks, Yan et al. [32] presented
the unified graph embedding framework and simultaneously
proposed marginal fisher analysis (MFA). Zhang et al. [33] pro-
vided patch alignment, which is another unified view of popular
manifold learning algorithms. Based on this framework, the dis-
criminative locality alignment (DLA) has been developed.

In this paper, we propose a new manifold learning algorithm
termed discriminative orthogonal EPP (DOEPP) to incorporate the
advantages of both EPP and MMC. Although EPP can explore the
local sub-manifold and global structure information, it ignores the
discriminative and orthogonality information of high dimensional
data for classification tasks. Considering the fact that MMC can
preserve the discriminative information sufficiently and the
importance of orthogonality of the projection matrix, maximum
margin criterion and the orthogonal constraint are introduced into
the objective function of DOEPP, which has two advantages: (1) it
retains the elastic merits of EPP and MMC; (2) further improves
the discriminant power of EPP by adding the discriminative
information. We apply our method into two 3D synthetic mani-
folds and four public datasets (ORL, Yale, Extended YaleB and COIL-
20) to valuate its performance. Experimental results show that
DOEPP is more suitable for recognition tasks than EPP and MMC.

The rest of the paper is organized as follows: In Section 2, a
brief review of MMC and EPP is given. Section 3 presents the basic
idea of the proposed DOEPP. Section 4 verifies the effectiveness of
our method through a variety of experiments, and Section 5 pre-
sents our conclusions.
2. A review of MMC and EPP

In this section, we will first introduce some notations and then
take a summary on MMC and EPP briefly. Consider the data set X,



Fig. 3. Graph models of DOEPP. Left: global graph Gg and right: local prior graph Gl.

Fig. 4. The visualization cases of weighted matrix on ORL and Yale databases: (a) Wg, (b) Wl of EPP and (c) Wl of DOEPP.

Table 2
The main procedure of DOEPP.

Input: Data set X ¼ fxi j i¼ 1;2;…;ng; Balance parameter
γ; Neighborhood size k.
Output: The final optimal projection matrix U.

Main steps:
1. Use PCA to preprocess the training samples and to eliminate the useless

information of the training
data X. We still denote the projected training data in the subspace by X and the

PCA projection matrix by UPCA .
2. Compute Wg and Wl by Eq. (8) after constructing the graph models as Fig. 3.
3. Build the objective functions based on the above graph models described in

Eq. (11).
4. Solve the standard eigenvalue problem (12) to obtain the optimal projection

matrix UDOEPP ¼ ½u1;u2⋯ud�, whose vectors are the eigenvectors corre-
sponding to the d smallest

eigenvalues. The final optimal projection matrix is U ¼UPCAUDOEPP and the low

dimensional embedding Y ¼UTX.
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which consists of N samples xi ð1r irNÞ from the high-
dimensional space RD. That is X ¼ ½x1; x2…xN� and Ξ ¼ ½l1; l2…lN�,
where xiARD and its label liAf1;2…Cg. The objectives of a
dimensionality reduction are to search the optimal mapping
function f and to compute the faithful low-dimensional repre-
sentations Y ¼ ½y1; y2…yN�ARd�N , where doD, as shown in Fig. 1.
For the linear methods, the optimal mapping function f is
equivalent to a projection matrix U. The notations used in this
paper are summarized in Table 1.

2.1. MMC

Maximum margin criterion (MMC) [11] aims to maximize the
margin between different classes in low dimensional space, as
shown in Fig. 2. Extensive experimental results [11] have shown
that its discriminative power was better than the power of PCA
and LDA. Furthermore, MMC cannot suffer from the small sample
size problem, which is known to cause serious stability problems
for LDA. In [11], the objective function of MMC is summarized as:

J ¼max
1
2

XC
i ¼ 1

XC
j ¼ 1

pipjdðCi;CjÞ ð1Þ

where pi and pj are the prior probability of class i and class j,
respectively, and Ci and Cj are all samples of class i and class j,
respectively; dðCi;CjÞ is defined as the distance between class i and
class j.

dðCi;CjÞ ¼ dðmi;mjÞ�ϕðiÞ�ϕðjÞ ð2Þ



Fig. 5. 500 data points randomly sampled on two well-known synthetic 3D manifolds: (a) S-curve and (b) Swiss roll.
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where mi and mj are the mean vector of class i and class j,
respectively, and ϕðiÞ and ϕðjÞ are the covariance matrix of class i
and class j, respectively. Here ϕðiÞ ¼ trðSiÞ; i¼ 1…C. Maximum
margin in the low dimensional feature space can be transformed
as the following matrix form equation:

J ¼max trðSYB �SYW Þ ð3Þ
Furthermore, MMC added the orthogonal constraint into the
objective function to reconstruct the data. Thus the objective
function of MMC can be deformed as follows:

J ¼max trðSYB�SYW Þ ¼max tr UT ðSB�SW ÞU
h i

s:t: UTU ¼ I

8<
: ð4Þ

Obviously, the solutions of Eq. (4) are obtained by solving a stan-
dard eigendecomposition problem, that is ðSB�SW ÞU ¼ λU. Finally,
the optimal projection matrix U is given by U ¼ ½u1;u2…ud�, where
u1;u2…ud are the column vectors ordered according to eigenva-
lues λ1oλ2o⋯oλd.

2.2. EPP

Elastic preserving projections (EPP) [31] incorporates the
advantages of both the local geometry and global information of
the training set. Based on the unified graph embedding framework
[34], we analyze elastic preserving projections or elasticfaces. The
procedure of EPP is decomposed into three steps as follows:

1. Graph construction: EPP [31] constructs two graph models: the
undirected neighborhood graph Gl and global graph Gg. The k-
nearest neighbor method is adopted to construct the local graph
Gl. The graph models are described as Gg ¼ ðX; Eg ;WgÞ and
Gl ¼ ðX; El;WlÞ, where the edge sets of the two graph models
are Eg ¼ fðxi; xjÞj 8 i; j¼ 1;…N; ia jg and El ¼ fðxi; xjÞj xiANeðxjÞ;
xjANeðxiÞg, respectively. The corresponding weights of Gl and

Gg are defined as Wlij ¼ exp � Jxi � xj J 2

σ2

� �
when xjANeðxiÞ and

Wgij ¼ Jxi�xj J2exp � Jxi � xj J 2

2t2

� �
, respectively. Note that σ2 and t

are two suitable kernel parameters.
2. Targets on the graphs: After the linear transformation, EPP does

not only utilize the global information to discover the Euclidean
structure of the high dimensional space, but also exploit the
local geometrical structure to seek the nonlinear sub-manifold
hidden in the high dimensional space.
3. Optimization: The targets of EPP are converted into the follow-
ing objective functions:

arg min
U

Xn
i;j ¼ 1

Wlij JU
Txi�UTxj J2 ¼ tr½UTXLlX

TU�

arg max
U

Xn
i;j ¼ 1

Wgij JU
Txi�UTxj J2 ¼ tr½UTXLgX

TU�

8>>>>><
>>>>>:

ð5Þ

where Ll ¼Dl�Wl and Lg ¼Dg�Wg , Dg(or Dl) is a diagonal matrix
and Dgii ¼

P
jWgij.

To preserve the elasticity of the training set, Zang et al. con-
verted the above two constraints into a constraint which simul-
taneously exploits the local and global information of the samples.
Finally, the goal of EPP was to find the optimal transformation
matrix U which maximizes the following optimization problem:

arg max
U

tr½UTX½ð1�αÞWlþαLg �XTU�

s:t: tr½UTXðDl�DgÞXTU� ¼ const

8<
: ð6Þ

where αA ½0;1� is a trade-off parameter. Finally, Eq. (6) can be
converted into Eq. (7) generalized eigenvalues problem by
Lagrangian multiplier method:

X½ð1�αÞWlþαLg�XTU ¼ λXðDl�DgÞXTU ð7Þ
Although the experimental results show that EPP performed

better than the traditional manifold learning methods, it is an
unsupervised method which cannot utilize the discriminant
information of labeled samples. Therefore EPP did not perform
well for the classification tasks.
3. Discriminative orthogonal elastic preserving projections

In many real applications, such as face recognition and image
retrieval, many sample points are labeled or annotated by human
or systems. However most of traditional manifold learning algo-
rithms are only to find the low dimensional representation Y by
preserving the intrinsic structure of high dimensional data X and
cannot use the discriminative information directly and explicitly.
Therefore, we propose a novel manifold learning method named
discriminative orthogonal elastic persevering projections (DOEPP)
to utilize all of the class label information and improve the per-
formance of classification tasks.



Fig. 6. Projection results of nine manifold learning methods on S-curve data samples.
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The main idea of DOEPP is to incorporate the merits of mani-
fold learning and the advantages of supervised learning. Different
from the traditional manifold learning methods, like PCA, LPP, NPE
and EPP, our algorithm is not only able to preserve the elasticity of
the training set, but can effectively enhance the discriminative
performance of manifold learning algorithms by extracting label
information from the annotated samples. Therefore, to preserve
the elasticity of the training set X, DOEPP construct two graph
models: global graph Gg and local neighborhood graph Gl. Similar
to PCA, DOEPP builds the global graph Gg as shown Fig. 3(a). The
traditional manifold methods, like LPP, NPE and EPP, often ignore
the labels of the training points and only preserve the local geo-
metrical structure by the graph Laplacian. Different from the tra-
ditional methods, DOEPP constructs local prior graph Gl by using
labels of training samples as prior knowledge, to make distances of
samples in a same class of Y as small as possible, while distances
between different classes are as large as possible, as shown in
Fig. 3(b). The weights of each edge in Gg and Gl are calculated by
Eq. (8). The visualization results of Gg and Gl on ORL and Yale are
presented in Fig. 4(a) and (c), respectively. Fig. 4(c) shows that
DOEPP can decrease the coefficients or weights of neighborhoods
in the different classes and will have better performance than EPP:

Wlij ¼
exp � Jxi�xj J2

2t2

 !
; lj ¼ li

0; otherwise

8>><
>>:

Wgij ¼
Jxi�xj J2exp � Jxi�xj J2

2t2

 !
; ia j

0; i¼ j

8>><
>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

Therefore, the objective function of the elasticity of the training
set X can be represented by two parts: (1) preserving the hidden
sub-manifold structure and (2) discovering global Euclidean



Fig. 7. Projection results of nine manifold learning methods on Swiss Roll data samples.
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information. In other words,the objective function of the elasticity
is formulated as the following two optimization problems:

min
U

Xn
i;j ¼ 1

Wlij JU
Txi�UTxj J2 ¼ tr½UTXLlX

TU�

max
U

Xn
i;j ¼ 1

Wgij JU
Txi�UTxj J2 ¼ tr½UTXLgX

TU�

8>>>>><
>>>>>:

ð9Þ

where the weighted matrices Wg and Wl are calculated by Eq. (8),
Ll ¼Dl�Wl and , Lg ¼Dg�Wg . Dg and Dl are diagonal, Dlii ¼

PN
j ¼ 1

Wlij and Dgii ¼
PN

j ¼ 1 Wgij.
EPP only uses k-nearest neighborhoods (kNNs) to build the

local graph Gl and does not use the label information. Therefore, it
is difficult for EPP to avoid the effect of noise in the training data,
that is the k-nearest neighborhoods set of the current sample
often consists of different class samples, as shown in Fig. 4(b). To
solve this problem, DOEPP does not only add label information
into constructing the local graph Gl, but also impose maximum
margin constraint between different classes into our objective
function. Similar to MMC, the maximum margin constraint can be
formulated as

J ¼max trðSYB�SYW Þ ¼max tr UT ðSB�SW ÞU
h i

ð10Þ

To further enhance the discriminative power and eliminate the
redundant information of a given data set X, DOEPP also imposes
the orthogonal constraint of projection matrix U, that is UTU ¼ I.
Finally, to preserve the elasticity and discriminant information of
the training set, the multi-objective functions of DOEPP can be
redefined as the optimization problem:

max
U

tr UT ½X½ð1�αÞWlþαLg �XT þβðSB�SW Þ�U
n o

s:t: UTU ¼ I

8<
: ð11Þ

where α and β are two control parameters. αA ½0;1� represents the



Fig. 8. Sample face images from the four databases. The first row comes from ORL; the second row comes from Yale; the third row comes from Extended YaleB; and the
fourth row comes from COIL-20.

Table 3
Average recognition rates (%)7 standard deviation of eight algorithms on ORL.

Mode MMC LPP NPE DSNPE EPP MFA DLA DOEPP

2 Train 69.06 73.66 61.0873.90 60.6974.03 70.8173.05 65.2072.68 76.3073.49 80.2273.62 78.4572.64
3 Train 77.8572.38 70.0172.32 71.57 72.47 76.9472.77 69.72 72.32 86.6172.17 89.4771.94 85.88 72.90
4 Train 83.871.91 76.1372.61 78.20 73.22 80.5672.51 72.41 71.61 91.29 71.94 93.00 71.50 90.4971.46
5 Train 88.04 72.52 80.0772.63 82.58 72.53 82.86 72.50 74.03 71.84 93.95 71.56 95.28 71.56 93.4471.48
6 Train 80.4273.31 82.6572.59 85.68 72.52 83.38 73.02 75.3 71.90 95.16 71.57 96.4871.54 95.1571.65
7 Train 73.6574.59 85.7 73.19 88.972.96 84.91 73.63 75.6572.77 96.5171.80 97.3 71.50 96.4 71.69
8 Train 63.4574.60 87.93 72.96 90.9272.73 85.67 73.50 77.473.17 97.17 71.85 98.371.49 98.4571.74
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weight of global structural information, while β40 indicates the
importance of discriminant information for the current task.

To find the optimal transform matrix U, we can use the
Lagrange multipliers to transform Eq. (11) into the following
eigenvalues problem:

½X½ð1�αÞWlþαLg�XT þβðSB�SW Þ�U ¼ λU ð12Þ
According to the basic algebra and matrix knowledge, the

optimal transformation matrix U is constructed by the eigenvec-
tors u1;u2;…;ud of X½ð1�αÞWlþαLg�XT þβðSB�SW Þ associated
with its d smallest eigenvalues that maximize the objective
function.

According to the unified framework, the main procedure of
DOEPP is listed in Table 2. To some extent, the formulation of our
proposed method is a weighted least square regression problem.
In other words, it is convex. Therefore, it has a closed and global
optimal solution. Compared with other related approaches, the
computational complexity of our algorithm is not so high. In fact,
the most computational step of DOEPP is to solve the problem in
Eqs. (8) and (12). Their computational complexities are OðDNk3þ
DN2Þ and OðdqN2Þ. Thus, the computational complexity of DOEPP is
maxfOðDNk3þDN2Þ;OðdqN2Þg.
1 http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
4. Experimental results

In this section, several experiments were carried out to exam-
ine the effectiveness of our proposed method for classification and
dimensionality reduction of synthetic data.

4.1. Synthetic data

In this subsection, we evaluate the performance of DOEPP by
comparing against five non-linear and three linear representative
dimensionality reduction methods: MDS, ISOMAP, LE, LLE, HLLE,
LPP, NPE and EPP on two well-known synthetic data sets from
[35]: The S-curve and the Swiss roll, for manifold structure
learning. We use an implementation of MDS, ISOMAP, LE, LLE,
HLLE, LPP and NPE, which is publicly available.1 We implemented
EPP in MATLAB.

We sample 500 three dimensional data points from the S-curve
and Swiss roll manifolds randomly and add Gaussian noise into
samples as the training set. The sampled points are shown in
Fig. 5. And then we compute the low dimensional embedding of
the above nine methods. Experimental results on S-curve and
Swiss roll are shown in Figs. 6 and 7, respectively. Fig. 6 illustrates
that the performance of DOEPP parallels that of ISOMAP, LE and
HLLE and outperforms the other five methods consistently for S-
curve data. Fig. 7 shows that the performance of DOEPP parallels
that of LE and outperforms that of the other seven methods for
Swiss roll data. But LE, ISOMAP and HLLE are the non-linear
methods, they cannot process the new data points directly.
Therefore, DOEPP outperforms other methods in most of the cases,
that is DOEPP can get more faithful projections that others.
Because compared with the traditional manifold learning meth-
ods, DOEPP does not only preserve global and local geometric
structural information of the high dimensional manifolds, but also
can maintain the discriminative and orthogonal information.

4.2. Classification on real datasets

In this subsection, we evaluate DOEPP by comparing to the
following seven methods on four standard image databases, ORL,
Yale, Extended YaleB and COIL-20: (1) MMC [11], (2) LPP [26],
(3) NPE [27], (4) EPP [31], (5) Discriminant sparse neighborhood

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html


Table 4
Student t-test results between DOEPP and other approaches for the results on ORL. W means DOEPP performs better. F means other method performs better. B means that
DOEPP and other methods cannot outperform each other. The value in the bracket is the associated p-value. The statistical significance of t-test is 5%.

Dataset Method 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train

ORL MMC W(.00) W(.00) W(.00) W(.00) W(.01) W(.01) W(.01)
LPP W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
NPE W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
DSNPE W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
EPP W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
MFA W(.00) W(.01) W(.02) W(.01) W(.03) W(.02) W(.02)
DLA W(.01) B(–) W(.03) F(.03) B(–) B(–) W(.08)
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Fig. 9. Best recognition rate versus training numbers with different methods on ORL.

T. Luo et al. / Neurocomputing 179 (2016) 54–68 61
preserving embedding (DSNPE, [36]), (6) MFA [32], (7) DLA [33].
The sample images from these four datasets are shown in Fig. 8.

Among these algorithms, LPP, NPE and EPP are unsupervised
algorithms which do not use the class label information, while
MMC, DSNPE, MFA and DLA are supervised. DLA and MFA are
recently proposed manifold learning algorithms. All images from
four databases are cropped and normalized to the 32�32 pixel
arrays with 256 gray levels per pixel. Each image was reshaped to
one long vector by arranging its pixel values in a fixed order. And all
datasets were randomly divided into two separate sets: training set
and testing set. Training set was used to learn the low-dimensional
subspace along with the projection matrix. Testing set was used to
report the final recognition accuracy. The source codes for LPP, NPE2

and DLA3 are available online . We implemented other algorithms in
MATLAB. Different algorithms follow an equivalent procedure for all
experiments on various datasets. The procedures for the classifica-
tion problems are separated into three steps:

� Each algorithm is applied to training samples to learn the pro-
jection matrix U.

� Each testing sample is projected onto a low-dimensional space
via U.

� The testing samples in the projected subspace are identified by
the NN classifier (NNC).

4.2.1. ORL
ORL4 (formerly Olivetti Research Ltd.) contains 40 individuals

and 10 different images for each individual, including variations in
2 http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
3 http://www.rad.upenn.edu/sbia/Tianhao.Zhang/DLA.m
4 http://www.uk.research.att.com/facedatabase.html
the lighting, facial expression (smiling/not smiling) and pose. The
images were taken with a tolerance for some tilting and rotation of
the face up to 20. For each of the 40 peoples, we randomly selected
a different number of samples per person for training (2, 3, 4, 5, 6,
7, or 8), and the remainders were used for testing. All the tests
were repeated 50 times, and we then calculate the best recogni-
tion rate and the recognition results under different reduced
dimensions.

Fig. 9 gives comparisons of the best recognition rates of eight
algorithms under a different training number and Fig. 9 presents
the recognition rates of 8 algorithms under different reduced
dimensions. The mean and standard derivation (std) values of
classification results are shown in Table 3. Besides, we compare
our method with other approaches by Student's t-test. The sta-
tistical significance with a threshold of 0.05 is listed in Table 4. The
smaller p-value means the higher assurance of the conclusion.

As seen from Figs. 9, 10, Tables 3 and 4, from the statistical
view, we can see that DOEPP achieves significantly better results
compared to the other algorithms in most cases. Besides, the
experimental results also show consistently that DOEPP can
extract features very efficiently.

4.2.2. Yale
Yale5 contains 165 images of 15 persons. Lighting conditions,

gender, facial expressions and configurations are different among
these images. For training, we randomly selected a different
number of samples per person for training (2, 3, 4, 5, 6, 7, or 8), and
use the remainders for testing. All the tests were repeated 50
times, and we then calculate the best recognition rate and the
recognition results under different reduced dimensions. Figs. 11
5 http://cvc.yale.edu/projects/yalefaces/yalefaces.html

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
http://www.rad.upenn.edu/sbia/Tianhao.Zhang/DLA.m
http://www.uk.research.att.com/facedatabase.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Fig. 10. Recognition rate versus subspace dimension with a different number of training and different methods on ORL.
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Fig. 11. Best recognition rate versus training numbers with different methods on Yale.
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Fig. 12. Recognition rate versus subspace dimension with a different number of training and different methods on Yale.

Table 5
Average recognition rates (%)7standard deviation of eight algorithms on Yale.

Mode MMC LPP NPE DSNPE EPP MFA DLA DOEPP

2 Train 40.6973.94 42.0174.09 35.1574.88 46.19 73.70 43.0273.42 51.74874.87 55.92 74.45 59.2574.10
3 Train 49.96 73.81 48.31 73.44 42.41 74.46 50.873.27 45.6172.64 65.2574.51 69.8173.66 67.6773.37
4 Train 53.6975.38 51.65 74.42 46.7074.96 53.2774.66 47.6572.82 72.2074.28 76.28 73.96 70.9973.16
5 Train 58.0474.20 54.1773.56 50.0873.85 55.86 74.52 49.2473.11 77.04 74.90 80.9573.73 75.4273.65
6 Train 63.17 75.46 57.4974.60 53.3674.36 57.0973.68 50.9673.83 80.7774.37 83.6274.25 78.5074.44
7 Train 64.50 73.84 59.80 75.98 55.93 74.32 61.0074.64 52.00 73.48 84.10 73.55 86.3373.73 81.63074.73
8 Train 70.8474.84 62.57 76.07 59.4675.81 61.0276.02 54.4074.40 84.5774.82 88.9374.02 84.5374.42
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and 12 give the results for the eight algorithms on Yale. The mean
and standard derivation (std) values of classification results are
shown in Table 3. Besides, we compare our method with other
approaches by Student's t-test. The statistical significance with a
threshold of 0.05 is listed in Table 4. The smaller p-value means
the higher assurance of the conclusion.
Fig. 11 presents that the best recognition rate of DOEPP out-
performs the other algorithms on training numbers 2, 3, 6, 7 and 8,
while the performance of DOEPP is inferior to DLA on training
numbers 4 and 5. In addition, it is shown that the recognition rate
of DOEPP outperforms the other algorithms obviously with the
increase of training number in Fig. 12. As seen from Figs. 11 and 12,



Table 6
Student t-test results between DOEPP and other approaches for the results on Yale. W means DOEPP performs better. F means other method performs better. B means that
DOEPP and other methods cannot outperform each other. The value in the bracket is the associated p-value. The statistical significance of t-test is 5%.

Dataset Method 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train

Yale MMC W(.00) W(.01) W(.01) W(.01) W(.01) W(.01) W(.01)
LPP W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
NPE W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
DSNPE W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.01)
EPP W(.00) W(.00) W(.00) W(.00) W(.00) W(.00) W(.00)
MFA W(.01) W(.01) W(.01) W(.01) W(.02) W(.05) W(.06)
DLA W(.03) B(–) B(–) F(.05) B(–) W(.05) B(–)

Table 7
Average recognition rates (%)7standard deviation of eight algorithms on YaleB.

Mode MMC LPP NPE DSNPE EPP MFA DLA DOEPP

2 Train 51.1074.27 49.1373.83 34.28 74.85 49.73 70.07 43.7274.37 50.30 74.43 54.32 74.03 60.4674.77
3 Train 62.4673.81 59.574.23 45.71 74.58 55.7170.65 50.8973.49 60.4373.55 66.28 73.45 71.4574.66
4 Train 69.9172.66 65.9672.99 55.7773.18 60.1671.54 56.0372.93 67.6373.56 73.94 72.55 78.0673.07
5 Train 76.01 72.23 71.6272.50 63.1973.24 63.69 70.99 59.76 73.18 72.3972.94 78.86 72.68 80.28 73.16
6 Train 79.23 72.13 74.8372.21 67.65 72.78 65.68 70.66 62.0772.22 76.0972.77 82.12 72.16 84.3572.49
7 Train 80.83 71.42 75.7871.80 71.2172.40 59.8972.77 64.8771.77 77.6672.40 84.1171.42 85.2972.45
8 Train 81.13 72.03 77.2871.81 74.9872.16 65.74 71.52 67.3772.08 81.1172.74 86.7671.69 83.3872.55
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Fig. 13. Best recognition rate of eight methods versus training numbers on Extended YaleB.
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Tables 5 and 6, from the statistical view, we can see that the
performance of DOEPP is significantly better than other methods
on Yale database in most cases.

4.2.3. Extended YaleB
Extended YaleB6 contains 16,128 images of 38 humans under

9 poses and 64 illumination conditions. In our study, we randomly
select 2414 images as a subset from Extended YaleB for perfor-
mance evaluation. For training, we randomly selected different
numbers (2, 3, 4, 5, 6, 7, or 8) of samples per person and use the
remainders for testing. All the tests were repeated 50 times, and
we then calculate the recognition rates under different reduced
dimensions and the average recognition results, and the standard
deviation. Figs. 13, 14 and Table 7 give the results for all of selected
algorithms on Extended YaleB. Fig. 13 and Table 7 give the results
for the eight algorithms on Extended YaleB. According to analyses
6 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
of experimental results in Fig. 13 and Table 7, we observe that
DOEPP outperforms the other methods except on training num-
bers 2 and 8. From Fig. 14, we have an interesting observation that
the performance of DOEPP is much better than others in low
dimensional embedding feature space.

4.2.4. COIL-20
COIL-207 contains 1440 images of 20 objects rotated on a

turntable taken from a fixed camera, resulting in 72 images per
object. For each of the 20 objects, we randomly select a different
number (2, 3, 4, 5, 6, 7, or 8) of samples per person for training,
and the remainders are for testing. All the tests were repeated 50
times, and we then calculate the best and average recognition
rates with its corresponding standard deviation. The experimental
results on COIL-20 are shown in Figs. 15, 16 and Table 8.
7 http://www.cs.columbia.edu/CAVE/coil-20.html

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cs.columbia.edu/CAVE/coil-20.html
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Fig. 14. Recognition rate of eight methods versus subspace dimension with a different number of training samples on Extended YaleB.

Table 8
Average recognition rates (%)7standard deviation of eight algorithms on COIL-20.

Mode MMC LPP NPE DSNPE EPP MFA DLA DOEPP

2 Train 69.7076.30 68.0075.76 64.75 75.72 66.7576.63 71.1576.31 71.6076.32 73.20 74.42 71.5576.12
3 Train 77.00 76.08 73.4075.44 69.93 75.94 70.5676.44 77.2375.82 77.8375.26 79.6674.46 78.9075.74
4 Train 79.0774.08 74.4074.85 71.30 74.49 72.1775.28 80.0073.91 79.3073.98 8273.66 80.6575.28
5 Train 83.5473.73 78.88 74.26 74.4875.10 76.22 74.27 82.7073.95 82.8274.82 85.6273.80 84.9674.81
6 Train 85.7673.01 81.1873.36 77.31 73.85 78.11 74.09 85.5572.95 84.9873.52 87.8672.95 86.6774.49
7 Train 87.0072.42 82.4772.68 78.68 73.29 78.82 73.68 86.52 72.86 86.28 72.81 88.6872.67 89.9072.52
8 Train 88.5772.56 83.75 73.13 80.40 72.68 79.52 73.22 88.5572.35 86.9772.92 90.0372.46 91.3472.49

T. Luo et al. / Neurocomputing 179 (2016) 54–68 65
Fig. 16 gives comparisons of the recognition rates of eight
algorithms under different reduced dimensions on COIL-20.
Table 8 lists the average recognition rates and the corre-
sponding standard deviation when the number of reduced
features fixed to 200. From Figs. 15, 16 and Table 8, we observe
that the performance of DOEPP parallels that of DLA, and
outperform again the remaining methods. Note that DOEPP
outperforms the other algorithms in the very low dimensional
feature space, as shown in Fig. 16. Overall, DOEPP seems to be
slightly better than DLA.

4.3. Parameter determination

For the classification problem, the two control parameters α
and β will have an effect on the recognition rates (RR). Since
parameter determination is still an open problem, we determine
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Fig. 16. Recognition rate of eight methods versus subspace dimension on COIL-20 with a different number of training samples.
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Fig. 15. Best recognition rate of eight methods versus training numbers on COIL-20.
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Fig. 17. The recognition rate of DOEPP versus the variation of α and β on ORL and Yale database.
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the most important parameters, i.e., α and β is a heuristic way.
More concretely, we determine two parameters by grid search at
first and then change them within certain ranges. Therefore, we
set α¼ ½0;0:05;0:1;0:15…0:95;1� and β¼ ½0;2;4…18;20� on ORL
and Yale. The experimental results are shown in Fig. 17.

As seen from Fig. 17, parameter determination takes influence
on the performance of DOEPP. Different combinations of para-
meters may result in different embeddings. Then, the recognition
results of classification change.
5. Conclusion

To enhance the performance of manifold learning, we propose
a new discriminative orthogonal elastic preserving projections
(DOEPP) for classification. EPP can explore the local sub-manifold
and global structure information simultaneously. We introduce the
discriminant information of class labels and the orthogonal con-
straint into the objective function of DOEPP. Therefore, DOEPP
does not only incorporate the advantages of both EPP and MMC,
but also can improve the discriminative performance for classifi-
cation tasks. Extensive experimental results on real datasets show
that DOEPP has more discriminative power than others. In our
future work, we will extend DOEPP to nonlinear form by kernel
trick and tensor analysis, which can process the tensor data
directly.
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