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ABSTRACT
Functional annotation of human genes is fundamentally impor-
tant for understanding the molecular basis of various genetic dis-
eases. A major challenge in determining the functions of human
genes lies in the functional diversity of proteins, that is, a gene
can perform di�erent functions as it may consist of multiple pro-
tein coding isoforms (PCIs). �erefore, di�erentiating functions of
PCIs can signi�cantly deepen our understanding of the functions
of genes. However, due to the lack of isoform-level gold-standards
(ground-truth annotation), many existing functional annotation
approaches are developed at gene-level. In this paper, we propose a
novel approach to di�erentiate the functions of PCIs by integrating
sparse simplex projection—that is, a nonconvex sparsity-inducing

�is work is partly supported by research grants from NSF China (No. 61473302,
61503396), NIH (R01 LM010730, U54 EB020403) and NSF (IIS- 0953662, III-1539991,
III-1539722). Jieping Ye and Jie Wang are both corresponding authors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’17, August 13–17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4887-4/17/08. . .$15.00
DOI: 10.1145/3097983.3097984

regularizer—with the framework of multi-instance learning (MIL).
Speci�cally, we label the genes that are annotated to the function
under consideration as positive bags and the genes without the
function as negative bags. �en, by sparse projections onto simplex,
we learn a mapping that embeds the original bag space to a dis-
criminative feature space. Our framework is �exible to incorporate
various smooth and non-smooth loss functions such as logistic loss
and hinge loss. To solve the resulting highly nontrivial non-convex
and non-smooth optimization problem, we further develop an e�-
cient block coordinate descent algorithm. Extensive experiments
on human genome data demonstrate that the proposed approaches
signi�cantly outperform the state-of-the-art methods in terms of
functional annotation accuracy of human PCIs and e�ciency.

CCS CONCEPTS
•Information systems →Data mining; •Computing method-
ologies→Optimization algorithms; Instance-based learning;
Information extraction; Semi-supervised learning se�ings; Bagging;
•Applied computing →Computational genomics; Bioinfor-
matics;

KEYWORDS
Non-Convex Problem; Key Instance Detection; Human PCIs; Multi-
ple Instance Learning; Alternative Splicing
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1 INTRODUCTION
Functional annotation of human protein coding isoforms (PCIs) is a
central task in bioinformatics and plays a critical role in understand-
ing the biological signi�cance and underlying mechanisms of genes.
Recent studies [6, 25] have shown that a gene can perform various
functions as it may consist of multiple PCIs. According to the most
recent GENCODE human annotation (version 19) [9, 11, 12, 19], a
total of 57,820 genes consist of 196,520 PCIs. Moreover, PCIs can
not only increase the protein functional diversity of mammalian
genomes, but also is closely related to various human inherited
diseases [9, 34, 40], such as colorectal cancer and spinal muscular
atrophy. �erefore, di�erentiating the functions of PCIs [6, 15, 37]
will accelerate our understanding of protein and gene functions.

However, due to the lack of isoform-level gold-standards (ground-
truth), many existing functional annotation methods are developed
at gene-level based on typical supervised learning algorithms, such
as support vector machine (SVM) [20], logistic regression [21],
Bayesian network [17] and Adaboost [32]. A major challenge in
determining the functions of genes is the functional diversity of
proteins, that is, a gene can perform di�erent functions as it may
consist of multiple PCIs. Without the ground-truth of isoforms, it
is very di�cult to build a suitable classi�cation model and anno-
tate the functions of PCIs by these supervised methods directly.
Nevertheless, with development of recent bio-technologies, a large
amount of gene expression data is obtained by deep sequencing
of RNA and provides informative source for identifying the func-
tions of PCIs. �us the wide availability of RNA-seq data greatly
increases our ability to di�erentiate the functions of isoforms. Fur-
thermore, a suitable machine learning model can greatly improve
the functional prediction performance of PCIs.

�e main challenge for functional annotation task is how to use
gene-level label information and a large number of gene expression
features to predict isoform-level pa�erns. Lack of isoform-level
gold standards prevents the functional annotation at isoform-level.
Recently, the multiple instance learning (MIL) [15, 26, 31, 33] ap-
proaches have been adopted to tackle this kind of problem. R. Eksi
et al. [15] developed a method named multiple instance support
vector machine (miSVM) to di�erentiate functions of alternatively
spliced isoforms on the mouse RNA-seq data. Recently, Panwar et
al. [31] adopted miSVM to annotate the funtions of human isoforms.
However, the optimal solution of miSVM was sensitive to the initial
labels of isoforms inherited from positive genes and a threshold
that represents a degree of strictness for assigning labels.

Recent studies [2, 7, 15] indicate that functional annotation of
PCIs can be viewed as a new scenario of MIL. Although the rapid
growth of RNA-seq data opens the door for functional annotation
of human PCIs, the major challenges for di�erentiating functions
of human PCIs still remain:

• Capturing the di�erential functions of human PCIs directly
by existing experimental approaches is di�cult.

• �e annotated isoforms are unavailable. Annotations of dif-
ferent functions are commonly performed at the gene level
in widely used databases such as Gene Ontology [4, 9] and
KEGG [6, 22, 23] instead of isoform level. In addition, as
each gene may contain more than one isoform, traditional

supervised learning algorithms are inadequate to deter-
mine if a isoform is related to a speci�c function assigned
at the gene level.

• �e functional annotation task of human PCIs is unconven-
tional. In fact, this task consists of two types of predictions.
When given a positive gene with a function, the �rst task
aims to determine which of its isoforms inherit this func-
tion. Another prediction task is to assign the functions of
isoforms even for genes which are unknown to these func-
tions and simultaneously predict the functions of genes.
Nevertheless, few of MIL methods are suitable for these
two predictions simultaneously.

To address these challenges, we propose a novel approach to dif-
ferentiate PCIs’ functions by integrating sparse simplex projection—
that is, a nonconvex sparsity-inducing regularizer—with the frame-
work of MIL. Speci�cally, a gene carries out a speci�c function by
its key isoforms. To obtain a more discriminative feature repre-
sentation of positive genes, we detect the key isoforms from them
and introduce an isoform weight vector for each positive gene to
measure the contribution of its isoforms. Based on the assumption
that each positive gene consists of at least one of positive isoforms
to carry out the function, we impose a nonconvex sparsity-inducing
regularizer, which incorporates l0-norm, l1-norm and non-negative
constraints on each isoform weight vector into our MIL framework.
It enables our model be�er approximate the problem of key isoform
detection. Finally, we learn these isoform weight vectors by sparse
projections onto simplex and obtain the new feature representa-
tions of the positive genes. Our uni�ed framework is �exible to
incorporate various smooth and non-smooth loss functions such
as logistic loss and hinge loss. Furthermore, under our framework,
we propose a novel method named weighted logistic regression-
based MIL method (WLRM). With the increase of gene expression
features’ dimensionality, elastic net regularization is employed in
our methods to alleviate the over-��ing problem. To solve our
formulated non-convex and non-smooth optimization problem, we
further develop an e�cient accelerated block coordinate decent
(BCD) algorithm. Extensive experiments on human genome data
show that our methods signi�cantly outperform the state-of-the-art
methods in terms of functional annotation accuracy of human PCIs
and e�ciency.

�e rest of this paper is organized as follows. Section 2 reviews
the background of MIL, and Section 3 presents our proposed MIL
framework and e�cient block coordinate descent algorithm with
backtracking line search. Experiments on real human genome data
are presented in Section 4, and the paper concludes with a summary
in Section 5.

Notations: Matrices and vectors are wri�en as boldface upper-
case le�ers and italic boldface lowercase le�ers, respectively. For
a matrix M = [mi j ], its ith row and jth column are denoted by
mi and mj , respectively. �e lp -norm of a vector v ∈ Rn is de-
�ned as ‖v‖p =

(∑
i |vi |

p )1/p ,p > 0 and l0-norm is the cardinality
of nonzero elements in v. �e notations used in this paper are
summarized in Table 1.
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Table 1: Notations.
Notations Description
d Dimensionality of the original data
N Number of genes
N1 Number of positive genes
BN Index set of all negative bags or genes
BP Index set of all positive bags or genes
ni Number of instances in ith bag or gene
1(·) Indicator function onto set C
Xi ∈ R

ni×d Feature matrix of ith gene
xij ∈ R

d �e jth feature vector of ith gene
ui ∈ Rni Isoform weight vector of ith gene
w ∈ Rd+1 Coe�cients of the model

2 RELATEDWORK
MIL was �rst introduced in [13] for drug activity prediction. Since
then, many MIL methods have been proposed in the literature.
Maron et.al. [29] proposed the diverse density (DD) method based
on the elliptic target concept in feature space closely related to
the peak density of positive instances. Zhang et al. [1] proposed a
re�nement of DD, named expectation maximization diverse den-
sity (EMDD) to learn the witness instances and perform multiple
instance regression simultaneously by the EM method. Under the
standard MI assumption, MIL could be viewed as a semi-supervised
learning problem with the additional constraint that positive bags
must contain at least one positive instance. In order to deal with
large scale MIL problems, Wei et al. [38, 39] proposed MIL based
on the Fisher Vector representation (miFV) and MIL based on the
vector of locally aggregated descriptors representation (miVLAD)
to convert the bag representation of an object to a simpler one, i.e.,
a vector representation. �us, miFV and miVLAD only concern
the classi�cation of bags and cannot di�erentiate the function of
instance. Besides, Andrews et al. [3] proposed multiple instance
support vector machines (miSVM and MISVM) by encoding the
positive constraints in the objective function of SVM. �e aim
of miSVM is to maximize the pa�ern margin of instances, while
MISVM aims to maximize the margins at bag-level. It is possible
for miSVM to predict the functions of isoforms based on the idea of
selecting the witness instances. Recently, R. Eski et al. [15] applied
miSVM and MISVM to annotate functions of mouse isoforms. �eir
experiments showed that miSVM performs be�er than MISVM.
However, miSVM is sensitive to the initial labels of these isoforms
extracted from positive genes.

�e objective of these MIL methods is to predict the labels of
bags, but not for instances. For a speci�c function, we have a set
of positive genes annotated based on Gene Ontology (GO) and
another set of negative genes that are unrelated to this function.
Each gene consists of multiple isoforms. Di�erentiating functions of
the genes can be tackled by traditional MIL methods. Nevertheless,
the target of functional annotation of human PCIs consists of three
tasks: key isoform detection, functional prediction of genes and
PCIs. Due to the lack of the ground-truth of isoforms, it is very
di�cult to determine the functions of isoforms at given a multiple
instance se�ing. In other words, functional annotation of human
PCIs is very di�erent from traditional MIL problems [33] and can be
viewed as a new type of MIL. �erefore, it is necessary to develop

(a) (b)

(c)

Figure 1: Illustration of key isoforms of positive genes for
a certain function. (a) �e green circles are the true positive
isoforms and the remaining blue circles are negative isoforms. Each
blue ring including at least one green circle represents the positive
gene and others are negative genes. (b) �e target of key isoform
detection is to �nd all of the green circles in positive genes. (c) �e
classi�cation hyperplane is learned by selected key isoforms.

a novel approach that can select key isoforms and di�erentiate the
functions of PCIs simultaneously.

3 A NOVEL MIL FRAMEWORK VIA
NON-CONVEX PROGRAMING

We are given a set of genes X = {X1,X2, ...,Xn }, and their cor-
responding labels y = {y1,y2, ...,yn } ∈ {−1,+1}n for a speci�c
biological process. �e ith gene includes ni isoforms whose feature
vectors are Xi = [x1, ..., xni ] ∈ Rd×ni . In our paper, a bag refers to
a gene, which contains multiple PCIs. An instance refers to an indi-
vidual isoform and a positive bag refers to a positive gene related to
the speci�c function. We aim to detect key isoforms from positive
genes and predict the functions of isoforms jointly by using the
available gene label information.

3.1 Motivation and Formulation
Most existing MIL methods [8, 15, 26, 27, 29] assume that each
instance in a bag plays an equal role when considering the similarity
between two bags. However, for a speci�c biological process, only a
few of positive genes carry out this function. For each positive gene,
only its key isoforms are closely related to this function. In other
words, the importance of isoforms for genes is not equal, especially
for positive genes. As shown in Fig.1, only a few of key isoforms
carry out this function and they are critical to functional annotation
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of genes. Meanwhile, as demonstrated in [3] and [28], key isoform
detection is able to discriminate the functions of isoforms and
thus help to improve the performance in real applications. �is
motivates us to develop a novel approach that is able to di�erentiate
the functions of PCIs by integrating a nonconvex sparsity-inducing
regularizer within the framework of MIL.

Without loss of generality, denote y and ŷ as the true label and
the predicted label for data point x. �en the loss function is de�ned
as l (y, ŷ). Similar to the typical supervised learning methods, we
adopt the linear model to predict the functions of isoforms, that
is, ŷ = wT x + b. However, although the labels of all genes are
known, the ground-truth of each isoform in positive genes remains
unavailable, which renders the loss l (y, ŷ) di�cult to compute. For
the i-th positive gene, a positive gene carries out a speci�c function
by its key isoforms. �us we introduce an isoform weight vector
ui ∈ Rni to measure the contribution of ni isoforms to the function
of this gene. If an isoform is negative, its weight will be zero. Note
that the isoform weight vector does not only detect the key isoforms,
but also eliminate the e�ect of negative isoforms in positive genes.
�us the isoform weight vector can enhance the discriminative
power of our model. With the estimated isoform weight vector, we
represent the positive gene by its selected key isoforms, that is, the
new feature representation of the i-th positive gene is Xiui . �e
loss of the i-th positive gene is l (yi ,wTXiui + b). For isoforms of
negative genes, their labels can inherit from the genes directly, and
the loss of i-th negative gene is ∑ni

j=1 l (yi ,w
T xij + b). Finally, the

loss of our model is formulated as∑
i ∈BP

l (yi ,wTXiui + b) +
∑
i ∈BN

ni∑
j=1

l (yi ,wT xij + b), (1)

where w is the coe�cients of the model, and BP and BN are the
index vectors of positive genes and negative genes, respectively.
For simplicity, the bias b can be absorbed into w when the constant
value 1 is added as an additional dimension for each isoform xi .
�us the problem in Eq. (1) is rewri�en as

min
w,ui

∑
i ∈BP

l (yi ,wTXiui ) +
∑
i ∈BN

ni∑
j=1

l (yi ,wT xij ). (2)

In practice, the RNA-seq data set is typically imbalanced, since
the number of negative genes is much more than the number of
positive genes. Similar to [20], we employ a weight parameter ρ/ni
for each negative gene to alleviate the imbalanced problem. �e
problem (2) is reformulated as

min
w,ui

∑
i ∈BP

l (yi ,wTXiui ) +
∑
i ∈BN

ρ

ni

ni∑
j=1

l (yi ,wT xij ), (3)

Based on the assumption [15] that each positive gene contains at
least one key isoform to carry out the function and the remaining
ones are negative isoforms, the cardinality (l0-norm) constraint is a
natural way to constrain the number of selected key isoforms. By
de�nition, each element of the isoform weight vector represents
the relationship between isoform and the function. It requires all
elements of isoform weight vector to be non-negative. To some
extent, the isoform weight vector can be viewed as a mapping which
embeds the original bag space to a discriminative feature space.
�e new feature representation of a positive gene is the convex

combination of all selected key isoforms. It is natural to constrain
the summation of all elements to be equal to 1, that is, l1-norm
constraint. �erefore, the nonconvex sparsity-inducing regularizer,
which incorporates l0-norm, l1-norm and non-negative constraints
into the isoform weight vector, is employed in our formulation
to be�er approximate the problem of key isoform detection. �e
formulation in Eq. (3) becomes

min
w,ui

∑
i ∈BP

l (yi ,wTXiui ) +
∑
i ∈BN

ρ

ni

ni∑
j=1

l (yi ,wT xij )

s .t . ∀i ∈ {1, ...,N1}, ‖ui ‖0 ≤ r , | |ui | |1 = 1,ui � 0.
(4)

Similar to SVM, when the dimensionality of expression features
is large than the number of isoforms, Eq. (4) is also prone to over-
��ing. A standard technique to alleviate over-��ing is regular-
ization. Zou et al. [42] proposed the elastic net penalty which is
a �exible regularization by mixing l1-norm and l2-norm regular-
ization. Prior works have shown that the model with the elastic
net penalty o�en outperforms the model with l1-norm or l2-norm
regularization only. �us our uni�ed model incorporates the elastic
net regularization to sparsify the coe�cients w. Finally, our uni�ed
framework can be formulated as

min
w,ui

∑
i ∈BP

l (yi ,wTXiui ) +
∑
i ∈BN

ρ

ni

ni∑
j=1

l (yi ,wT xij )

+ λ1‖w‖2 + λ2‖w‖1
s .t . ∀i ∈ {1, ...,N1}, ‖ui ‖0 ≤ r , | |ui | |1 = 1,ui � 0.

(5)

Note that our uni�ed framework is �exible to incorporate various
smooth and non-smooth loss functions. In this paper, we propose
the weighted logistic regression-based MIL method (WLRM) by us-
ing logistic loss under this framework. �us the basic loss function
of WLRM can be formulated as

min
w,ui

∑
i ∈BP

log (1 + exp(−yi 〈w,Xiui 〉)) +

∑
i ∈BN

ρ

ni

ni∑
j=1

log
[
1 + exp(−yi 〈w, xij 〉)

]
.

(6)

in which by integrating the noncovex sparsity-inducing regulariz-
ers, we can �nally obtain our WLRM model as follows

min
w,ui

∑
i ∈BP

log (1 + exp(−yi 〈w,Xiui 〉)) + λ1‖w‖2+

∑
i ∈BN

ρ

ni

ni∑
j=1

log
[
1 + exp(−yi 〈w, xij 〉)

]
+ λ2‖w‖1

s .t . ∀i ∈ {1, ...,N1}, ‖ui ‖0 ≤ r , | |ui | |1 = 1,ui � 0.

(7)

It is worth noting that, although traditional logistic regression
(LR) has been applied in many real applications, LR is not e�ective
for functional annotation of PCIs, because there are no su�cient
label information of isoforms, especially labels of true positive
isoforms. Meanwhile, to solve our non-convex and non-smooth
formulation, we further develop an e�cient accelerated block coor-
dinate decent (BCD) algorithm.
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3.2 Optimization Methods
In this section, we develop an e�cient algorithm based on the block
coordinate descent (BCD) to solve this uni�ed framework. Denote
x = (w,u1, ...,un1 ) and Ci = {ui |ui ∈ Rni , ‖ui ‖1 = 1, ‖ui ‖0 ≤
r ,ui � 0}, and the loss function is de�ned as

f (x) =
∑
i ∈BP

l (yi ,wTXiui ) +
∑
i ∈BN

ρ

ni

ni∑
j=1

l (yi ,wT xij ).

�e problem (5) can be summarized as the following framework

min
x

F (x) = f (x) +
ns∑
i=1

ri (xi ), (8)

where ns = N1 + 1 and the function r1 (x1) = λ1‖w‖2 + λ2‖w‖1
and ri (xi ) = 1Ci (ui ) for i = 2, ...,ns is an indicator function of
Ci . By allowing 1Ci to take the∞-value, 1Ci can incorporate the
constraints ui ∈ Ci since enforcing the constraints is equivalent to
minimize the indicator function of Ci . According to its de�nition,
1Ci is proper and closed.

We can observe that (1) our uni�ed framework may include
the smooth and non-smooth loss function; (2) w and ui for i =
1, 2, ...,N1 are coupled in the loss function and (3) the noncon-
vex sparsity-inducing regularizer is imposed to constrain each ui .
�us, each block of x may be non-convex and non-smooth and
the problem (8) is a highly nontrivial nonconvex and non-smooth
optimization problem. It is very di�cult to solve the problem di-
rectly by the general gradient descent methods. Motivated by the
idea [41], we develop an e�cient block coordinate descent (BCD)
algorithm to solve the problem (5). Speci�cally, we minimize F
cyclically over each block of variables xi by BCD method of Gauss-
Seidel type, while �xing the remaining blocks at their last updated
values. Let xk+1

i denote the value of xi a�er its k-th update and let
f ki (xi ) , f (xk1 , ..., x

k
i−1, xi , x

k
i+1, ..., x

k
ns ) for all i and k . At each

iteration, we adopt a prox-linear surrogate function to approximate
the upper bound of F (xk+1), and then each block of variables xi
can be updated as follows:

xk+1
i ∈ arg min

xi
f ki (x̂k+1

i ) + 〈д̂ki , xi − x̂
k+1
i 〉

+
1

2αk
‖xi − x̂k+1

i ‖2 + ri (xi ),
(9)

Since f ki (x̂k+1
i ) is constant with respect to xi , the problem (9) is

equivalent to the following problem

xk+1
i ∈ arg min

xi
〈д̂ki , xi − x̂

k+1
i 〉 +

1
2αk
‖xi − x̂k+1

i ‖2 + ri (xi ), (10)

where αk > 0 is a step-size, д̂ki = ∇f
k
i (x̂ki ) and x̂k+1

i is the extrapo-
lation

x̂k+1
i = xki + γk (x

k
i − x

k−1
i ),

where γk ≥ 0 is an extrapolation weight. While we can simply set
γk = 0, an appropriate γk > 0 can speed up the convergence of
algorithm. Similar to the Nesterov’s accelerated gradient descent
[30], the extrapolation weight is given by γk =

tk−1
tk+1

with

t0 = 0, tk =
(√

4t2
k−1 + 1 + 1

)
/2.

Algorithm 1 Accelerated Block Coordinate Descent for Problem(5)

Initialize w1 = w0,u1
i = u0

i , β = 0.85, t0 = 0 and k = 1.
repeat

1. Compute tk =
(
1 +

√
4t2
k−1 + 1

)
/2 and γk =

tk−1
tk+1

;
2. Find the smallest non-negative integer ik by backtracking
line search with ᾱk (w) = βikαk (w);
3. Update wk+1 by wk+1 = ŵk+1 − αk∇q(ŵk+1).
for i = 1, 2, ...,N1 do

4. Find the smallest non-negative integer ik by backtracking
line search with ᾱk (ui ) = βikαk (ui );
5. Update each uk+1

i by uk+1
i (S∗) = PCi (ũ

k+1
i (S∗)).

end for
6. k = k + 1.

until Stopping criterion is satis�ed.

When the Lipschitz constant Lk of д̂ki about xi is known, we
can set the step-size αk =

β
Lk

with any 0 < β ≤ 1. However, Lk is
o�en unknown or di�cult to bound in practice, we will choose a
proper step size αk by backtracking line search method under the
criterion:

f (xk ) ≤ f (x̂k−1) + 〈∇f ki (x̂k−1), xki − x̂
k−1
i 〉 +

β

2αk
‖xki − x̂

k−1
i ‖2.

Finally, the optimization details of solving the problem (5) by
accelerated block coordinate descent under backtracking line search
are listed in Algorithm 1.

3.3 Optimize model coe�cients w
When ui is �xed, the problem (8) can be reformulated as:

q(w) = f (w) + λ1‖w‖2 + λ2‖w‖1. (11)

Motivated by [5, 42], when �xed all of positive isoform weight
vectors [u1, ...,un1 ], the problem in (11) is a convex minimization
problem with elastic net penalty. �erefore, we can obtain the
optimal solution of the problem (11) by gradient-based methods.
Denote s (t ) = 1

2 (1 + siдn(1 − t )) and let

∇qlr (w) =
∑
i ∈BN

ρ

ni

ni∑
j=1

−yixij
1 + exp(yi 〈w, xij 〉)

+ 2λ1w

+
∑
i ∈BP

−yiXiui
1 + exp(yi 〈w,Xiui 〉)

+ λ2siдn(w),

(12)

be the gradient of WLRM w.r.t. w. According to Eq. (9), we derive
a quadratic model to update w at each iteration:

wk+1 ∈ arg min
w

〈
∇qlr (ŵk+1),w − ŵk+1〉 + ‖w − ŵk+1‖2

2αk
, (13)

where ŵk+1 is

ŵk+1 = wk + γk (wk − wk−1).

Moreover, the problem (13) has the closed form solution:

wk+1 = ŵk+1 − αk∇q(ŵk+1). (14)
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3.4 Optimize isoform weight vector u
When w is �xed, the problem (8) becomes

min
u1, ...,uN1

N1∑
i=1

дi (ui ) + 1Ci (ui ), (15)

where дi (ui ) = log(1+ exp(yi 〈w,Xiui 〉)) for WLRM. �e problem
(15) is decoupled between di�erent i , so we can solve the following
problem for each i individually:

min
ui

дi (ui ) + 1Ci (ui ).

Denote

∇дlri (ui ) =
ρ

ni

−yiXTi w
1 + exp(yi 〈w,Xiui 〉)

, (16)

as the partial derivatives of дi (ui ) of WLRM with respect to ui .
According to Eq. (9), we derive the following approximation model
to update ui at each iteration.

uk+1
i ∈ arg min

ui

1
2αk
‖ui − ûk+1

i ‖2 + 1Ci (ui )

+ 〈∇дlri (ûk+1
i ),ui − ûk+1

i 〉,

(17)

where ûk+1
i = uki + γk (u

k
i − u

k−1
i ).

�e formulation in (17) is a convex optimization problem with a
nonconvex sparsity-inducing regularizer. Motivated by the idea in
[14, 24], the problem (17) can be solved by the projected gradient
descent algorithm. Finally, according to the greedy selector and
simplex projector (GSSP) algorithm, the optimal solution of the
problem (17) is the sparse Euclidean projections of ũk+1

i onto the
positive simplex Ci , that is,

uk+1
i (S∗) = PCi (ũ

k+1
i (S∗)),uk+1

i (S∗) = 0, (18)

where PCi (·) is a projection operator with respect to a collection
of simpler sets Ci , ũk+1

i = ûk+1
i − αk∇дi (ûk+1

i ), S∗ is the index
set which keeps the r -largest positive entries of ũk+1

i and S∗ is the
complement of the set S∗.

3.5 Key Instance Detection on Synthetic Data
We provide a toy example to illustrate the e�ectiveness of detecting
key instances from positive bags in this section. �e toy data set
consists of two classes of instances, which are generated from
two di�erent Gaussian distributions (as shown in Fig. 2(a)). We
randomly generate �ve positive bags and ten negative bags from
two Gaussians. Fig. (2) (b) shows that, for each positive bag, we
randomly sample a positive instance (the red point) from original
positive class and certain negative instances from negtive class.
�en we apply WLRM to detect the positive instances and learn
the optimal classi�cation model. In this experiment, we set r = 1.
�e results are displayed in Fig. (2)(c). �e results verify that our
WLRM is e�ective to detect the positive instances from bags and
able to learn the optimal classi�cation model by selected instances.

4 EXPERIMENTS
In this section, compared with the state-of-the-art methods miSVM,
miFV and miVLAD, we present the experimental results on human
RNA-seq data to demonstrate the e�ectiveness of our proposed

WLRM. Meanwhile, we analyze the performance of WLRM in as-
pects of the parameter determination, convergence behavior and
time complexity.

4.1 Experiment Settings
�e dataset we used in our experiments is generated from a total
of 573 human RNA-seq runs of ENCODE project [9]. We perform
quality control on the original data.

(1) We used the human genome (build GRCh37.75) from Ensembl
to align the short-reads of each RNA-seq dataset by TopHat (v.2.0.11)
[35]. We removed the samples with less than 50% mapping reads
coverage and 248 runs (of total 127 samples) remains. We then
averaged expression values for each sample separately.

(2) We calculated the relative abundance of the transcript as
Fragment Per Kilobase of exon per Million fragments (FPKM) by
Cu�inks [36]. �en, we computed average expression values of
of a total of 63,783 genes with 214,292 isoforms for each sample
separately.

(3) As the extracted FPKM values for short transcripts (eg. tRNAs)
were very high, we removed genes in which the average length
of isoforms was less than 100 nucleotides. To ensure su�cient
non-zero values for the subsequent machine learning step, we used
only genes where more than half samples have larger than 1 FPKM
values. �en, we used only genes marked as protein coding (known,
novel and putative) biotype in the Ensembl.

A�er these data preprocessing steps, we obtain a data set con-
sisting of 11,946 genes with 59297 isoforms. We perform a log2-
transformation of the FPKM values.

GO term based functional annotation [6, 9, 10, 36] has been well-
studied in the past few years. Brie�y speaking, a GO term (data-
version:releases/2014-05-27) corresponds to a certain biological
process and a set of “responsible” genes. �us, for a given GO term,
we label the genes that are annotated to this GO term as positive
and the remaining genes as negative. �e number of positive genes
for these GO terms can be di�erent, ranging from 20 to 300. In this
paper, we focus on a list of 94 benchmark GO terms 1. We follow
the se�ings in [15] to divided all GO terms into �ve di�erent groups
according to the number of associated genes: (A) 20-27, (B) 28-40,
(C) 41-64, (D) 65-114 and (E) 115-300.

For each GO term, we employ �ve fold cross validation [18] to
estimate the model parameters and evaluate the performance of the
proposed WLRM against miSVM[3, 31], miFV[38] and miVLAD[39]
in terms of commonly used measures: classi�cation accuracy (ACC),
area under the ROC curve (AUC) [16], sensitivity, and speci�city.

4.2 Functional Annotation of Human PCIs
In this experiment, we apply WLRM into human RNA-seq dataset to
annotate the functions of PCIs. We compare our proposed WLRM
with the state-of-art algorithm miSVM, miFV and miVLAD in this
experiment. Due to the lack of ground-truth of annotated isoforms,
we can only evaluate the performance of all compared methods
at gene level by cross validation. �us we calculate the prediction
results by the label information of genes from Gene Ontology. Recall
that, we employ 5-fold cross validation to estimate the optimal
parameter values for all compared methods. We choose r = 2
1h�p://geneontology.org/page/go-slim-and-subset-guide
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Figure 2: Example results of the proposed method on a two dimensional synthetic data. (a) �e original distribution of the
synthetic positive and negative instances. (b) Training Bags with true instance-level labels sampled from original distributed
data. (c) �e learned classi�cation model and the selected instances by our method.
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Figure 3: Performance ofWLRM,miVLAD,miFV andmiSVM for functional annotation of human PCIs. From (a) to (d) present
the results of AUC, ACC, Sensitivity and Speci�city, respectively.

for WLRM. �e prediction performance is calculated for all of 94
GO terms. �e experimental results of AUC, ACC, sensitivity and
speci�city are shown in Fig. 3.

�e results in Fig. 3 show that the AUC, ACC, sensitivity and
speci�city results of WLRM are be�er than those of miSVM, miFV
and miVLAD. Speci�cally, Fig. 3 (a) and (c) indicate that when the
number of GO terms is very small, the performance of our methods
is much be�er than the results of other methods, as shown in groups

A and B. In group A, the median AUC values of WLRM is 0.691,
which are be�er than 0.645 of miSVM, 0.518 of miFV and 0.635 of
miVLAD. �e median sensitivity values of WLRM is 0.745, which
are much higher than 0.65 of miSVM, 0.533 of miFV and 0.589 of
miVLAD. �e main reason is that we use the weight ρ

ni to solve
the unbalanced problem and enhance the performance of WLERM.
On the other hand, as shown in Fig. 3 (b) and (d), the performance
of ACC and speci�city is slightly be�er with an increasing GO
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Figure 4: Performance variation of WLRM with respect to
di�erent values of the parameter r .

term size. Because we obtain more information about positive
genes with an increasing GO term size. Because WLRM is able
to eliminate the e�ect of negative instances in positive bags by
jointly selecting the positive instances and learning classi�cation
hyperplane. Overall, the performance of our proposed WLRM
outperform other compared methods in most cases.

4.3 E�ects of Parameters
In this experiment, we study the e�ects of di�erent parameter val-
ues in terms of the classi�cation performance. Recall that, our
models have four parameters, i.e., r , ρ, λ1 and λ2. �ey can be sepa-
rated two groups: �rst group is the parameter r , which control the
number of selected positive instances; another group is parameters
ρ, λ1 and λ2, which control the complexity of our WLRM.

We �rst study the e�ect of di�erent values of r . �e parameters r
controls the cardinality of nonzero elements in each ui . �e values
of r is chosen from {1, 2, 3}. For other parameters, we adopt cross
validation method to choose optimal values. �e results of average
AUC, ACC, sensitivity and speci�city are shown in Fig. 4. We can
observe that WLRM performs the best with r = 2. When r = 3,
the performance of WLRM decreases. With the increse of r , the
possibility of negative instance in positive bags is much more easily
selected as positive instance.

We next show the e�ects of ρ, λ1, and λ2 for �xed r = 2. Fig.
5 shows the mean AUC and ACC results of WLRM with di�erent
values of ρ, λ1 and λ2. We can see from Fig. 5 that, parameter deter-
mination takes in�uence on the performance of WLRM. Di�erent
combinations of parameters may result in di�erent classi�cation
models. �en, the AUC and ACC results change.

4.4 Convergence and Time Complexity
In this subsection, we take two groups of experiments. One group
is convergence analysis experiments. We present the convergence
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Figure 5: Performance variation of WLRM with di�erent
values of ρ, λ1 and λ2. �e top line is the mean AUC and
ACC values of WLRM with ρ = 1. �e middle line is the
mean AUC and ACC values of WLRM with ρ = 2. �e bot-
tom line is the results of WLRM with ρ = 3.

characteristics of our WLRM on four di�erent GO terms in Fig. 6.
�e objective function values are nonincreasing during the itera-
tions. Our proposed method converges within 100 iterations.

Another group is the computational time of WLRM, miSVM,
miFV and miVLAD on human genome dataset. All the algorithms
are tested on a laptop with 4 processors (2.27 GHz for each) and 8
GB available RAM memory by Matlab implementations. �e results
are shown in Table 2. �e results in Table 2 indicate that the running
time of miSVM, miFV, miVLAD and WLRM increases linearly with
the increase of the number of positive genes. Moreover, the running
time of other MIL methods are at least 4.30 times of the running time
of WLRM. When the number of positive genes is very small, i.e.,
the number in group A is from 20 to 27, the running time of other
compared methods are at least 10.68 times of WLRM, especially the
running time of miSVM is 31.39 times of WLRM. Overall, WLRM is
much more e�cient than others.
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Table 2: Average running time ± the standard derivation (in seconds) of miSVM, miFV, miVLAD and WLRM for training the
model on �ve groups of GO terms. �e last row is the speedup of WLRMwith respect to the runtime of the fastest one among
other three methods.

Methods Group A Group B Group C Group D Group E
miSVM 6340.0 ± 161.68 6385.5±243.14 6418.2±109.46 6455.2±215.87 6529.5±236.74
miFV 2872.0 ± 179.32 3169.7±198.71 4312.2±112.50 5693.5±197.89 8315.1±213.63

miVLAD 2157.6 ± 89.70 2661.5±135.43 3579.9±96.67 4939.3±110.87 6410.5±135.78
WLRM 201.9±55.91 304.6±81.67 490.3±89.67 833.2±135.47 1489.7±283.67

Speedup 10.68 8.74 7.30 5.93 4.30
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Figure 6: Number of iterations vs. the objective value of
WLRM on two di�erent GO terms.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we develop a novel uni�ed MIL framework to an-
notate functions of human PCIs. Based on this framework, we
proposed a new method called WLRM based on the logistic loss.
Speci�cally, we introduce an isoform weight vector for each pos-
itive gene and derive a nonconvex sparsity-inducing regularizes,
which includes non-negative, l0-norm and l1-norm constraints on
each isoform weights vector. �e proposed method detects the key
isoforms and embeds the original gene space into a discriminative
feature space simultaneously. �e isoform weight vectors can be
obtained by sparse projections onto a simplex. Meanwhile, we
develop an e�cient block coordinate descent approach to solve our
non-convex optimization problem. Finally, our WLRM is applied to
predict the functions of human PCIs. �ere are several interesting
directions to investigate in the future. First, we would like to �nd a
more e�cient and e�ective way of dealing with our non-convex
optimization problem. Second, we would like to extend our model
to the nonlinear case using kernel trick.
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