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ABSTRACT Traditional multi-view learning usually assumes each instance appears in all views. However,
in real-world applications, it is not an uncommon case that a number of instances suffer from some
view samples missing. How to effectively cluster this kind of partial multi-view data has attracted much
attention. In this paper, we propose an incomplete multi-view clustering method, namely Multi-view
Spectral Clustering with Incomplete Graphs (MSCIG), which connects processes of spectral embedding
and similarity matrix completion to achieve better clustering performance. Specifically, MSCIG recovers
missing entries of each similarity matrix based on multiplications of a common representation matrix and
corresponding view-specific representation matrix, and in turn learns these representation matrices based on
the complete similarity matrices. Besides, MSCIG adopts the p-th root integration strategy to incorporate
losses of multiple views, which characterizes the contributions of different views. Moreover, we develop an
iterative algorithm with proved convergence to solve the resultant problem of MSCIG, which updates the
common representation matrix, view-specific representation matrices, similarity matrices, and view weights
alternatively.We conduct extensive experiments on 9 benchmark datasets to compare the proposed algorithm
with existing state-of-the-art incomplete multi-view clustering methods. Experimental results validate the
effectiveness of the proposed algorithm.

INDEX TERMS Partial multi-view data, multi-view spectral clustering, incomplete graphs, similarity matrix
completion.

I. INTRODUCTION
With the development of data collection techniques,
in many practical applications such as image retrieval and
cross-language document categorization, data appear in mul-
tiple modalities or naturally come from multiple sources,
which are named as multi-view data. To effectively deal
with multi-view data, multi-view learning has become into
a hot area of research in last decades [1]–[6]. A common
assumption adopted by conventional multi-view learning
methods is that each data point appears in all views. However,
in real applications, it is not a uncommon case that a number
of instances suffer from some view representations missing,
which results in partial multi-view data. For example, in web
image retrieval, there may be some images with no text
descriptions, and due to the invalid URL, the image itself
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may be inaccessible. Another example is cross-language
document categorization, it is often the case that a document
is translated into several but not all languages. Since it is an
often case that every view of this kind of data suffers from
some samples missing, traditional single-view or multi-view
clustering methods may fail to obtain the clustering results of
all data points directly. Therefore, how to effectively cluster
partial multi-view data has become an important research
direction in recent years.

The early researches focus on the clustering task of incom-
plete two-view data. The work in [7] requires that there
is at least a complete view, and proposes a method which
constructs a full kernel on an incomplete view with the help
of the complete view. To deal with data with two incomplete
views, the work in [8] factorizes view-specific instances and
complete instances into a common learned latent subspace
to obtain their homogeneous and comparable representa-
tions. Based on [8], the algorithms proposed in [9], [10]
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introduce the adaptive graph regularization terms to cap-
ture local structure in the common representation learning.
The works proposed in [11]–[13] utilize the similar strategy
with [8] to design incomplete multi-view clustering algo-
rithms. One limitation of this strategy is that it requires that
each instance is complete or only appears in one view. How-
ever, for data with more than two incomplete views, it is a
common case that a number of instances are present in more
than one view but not all views.

To cluster multi-view data with arbitrary incomplete views,
several algorithms are designed based on weighted matrix
factorization. The method proposed in [14] first fills in
the missing samples with average values of present sam-
ples on each view independently, and then learns a com-
mon representation matrix based on weighted nonnegative
matrix factorization which assigns smaller weights for these
filled samples. The approach proposed in [15] introduces
a zero-one diagonal matrix for each view to eliminates the
influence of its missing samples, and learns a common
representation matrix based on semi-nonnegative matrix fac-
torization. Moreover, the methods proposed in [16], [17]
introduce zero-one weight matrices for multiple views to dis-
tinguishes their present elements from missing elements, and
thus they can deal with a more general incomplete problem.
Although thesematrix factorization-basedmethods adopt dif-
ferent norms, constraints, or regularization terms, they are
are essentially linear methods, which limits their ability to
disclose the non-linear structure of data. To address this issue,
several kernel-based and graph-based methods are proposed.
The work [18] recovers the missing entries of incomplete
kernels by measuring both between-view and within-view
relationships among kernel values. The work [19] extends
multiple kernel k-means and considers mutual kernel com-
pletion to integrate kernel imputation and representation
learning. The approach proposed in [20] first fills in the
missing entries of graph matrices with the average of the
columns, and then uses a co-training strategy to recover the
representations of missing samples of each view and learn a
common representation matrix. The method proposed in [21]
jointly performs graph construction and common representa-
tion learning based on incomplete view representations. The
work in [22] performs representation learning and clustering
simultaneously with multiple incomplete similarity matrices.
The approach proposed in [23] first fills in the missing entries
of similarity matrices with the average of corresponding
certain entries, and then learns views weights to combine a
common graph matrix.

In this paper, we propose Multi-view Spectral
Clustering with Incomplete Graphs (MSCIG) to handle
incomplete multi-view clustering problem. Different from
previous graph-based methods [20], [23] which adopt sep-
arate steps to fill in the missing entries of similarity matrices
and learn a common representation matrix, the proposed
MSCIG aims to achieve better clustering performance by
integrating the processes of both imputation and represen-
tation learning seamlessly, which makes low dimensional

FIGURE 1. The flowchart of MSCIG.

representations guide the imputation of missing graph ele-
ments, and the completed graphs in turn influence the subse-
quent representation learning. Concretely, MSCIG employs
the common representation matrix to take part in the impu-
tation of missing entries of similarity matrices. To enable
the imputation to explore the diverse information of views,
a view-specific representation matrix is introduced to help
the imputation of missing entries of each similarity matrix,
and a regularization term is design to maximize the align-
ment between the common representation matrix and the
view-specific representation matrix. To characterize contri-
butions of multiple views, MSCIG adopts the p-th root inte-
gration to incorporate the losses of multiple views. To solve
the resultant non-convex problem of MSCIG, we introduce
another problem with explicit view weight factors. And we
propose an iterative and alternative algorithm for optimiza-
tion. In our proposed algorithm, the representation learning,
imputation ofmissing graph entries, and viewweight learning
are alteratively performed until convergence. Fig. 1 displays
the flowchart of MSCIG. The clustering performance of
the proposed algorithm is evaluated by systematical exper-
imental study on nine multi-view datasets. The experimental
results indicate that our proposed algorithm achieves better
clustering performance than the compared state-of-the-art
incomplete multi-view clustering methods.

The rest of the paper is organized as follows. Section II
introduces the background. Section III and IV introduce
the formulation and the optimization algorithm of the pro-
posed MSCIG, respectively. Section V gives some analysis
about the proposed algorithm. Experimental results on nine
multi-view datasets are displayed in Section VI. Finally,
we give the conclusion of this paper in Section VII.

II. BACKGROUND
Throughout the paper, matrices are written as boldface upper-
case letters, and vectors are written as boldface lowercase
letters. For matrix M = [mij], its i-th row is denoted by mi.
The transpose, the Frobenius norm, and the trace of matrix
M are denoted by MT , ||M||F , and tr(M), respectively. The
2-norm of vector mi is denoted by ||mi||.
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A. PROBLEM SETTING
A dataset with n instances can be represented by X =

[x1; . . . ; xn] ∈ Rn×d , where xi ∈ R1×d is the i-th instance.
Suppose they are collected from V views, and therefore, each
instance has V view samples, i.e., xi = [x(1)i , . . . , x

(V )
i ],

where x(v)i ∈ R1×d (v) is the i-th sample of the v-th view and
d =

∑V
v=1 d

(v). We use X(v)
= [x(v)1 ; . . . ; x

(v)
n ] ∈ Rn×d (v) to

collect all v-th view samples.
For a incomplete multi-view dataset, every viewmay suffer

from some view samples missing. To identify the present
samples from missing samples of each views, we introduce
a indicator matrix M ∈ {0, 1}n×V , and its (v, i)-th element
mvi is defined as follows:

mvi =

{
0, if x(v)i is missing.
1, otherwise.

(1)

Incomplete multi-view clustering aims to group {xi}ni=1 into
C clusters by utilizing multiple views.

B. CLASSIC NORMALIZED CUT AND MOTIVATION
Given an one-view datasetX = [x1; . . . ; xn] ∈ Rn×d , we can
construct a graph similarity matrix W = [wij] ∈ Rn×n to
measure the relationships between each pair of data points,
where wij reflects the similarity between xi and xj. Based
on W, the Laplacian matrix L ∈ Rn×n is calculated by
L = D − W, where D is a diagonal matrix with the i-th
entry dii =

∑n
j=1 wij. The objective of relaxed Normalized

Cut (Ncut) is

min
FTF=IC

tr(FTD−
1
2LD−

1
2F) (2)

where F ∈ Rn×C denotes the relaxed variable. Since L =
D−W, the problem (2) is equivalent to

max
FTF=IC

tr(FTD−
1
2WD−

1
2F) (3)

The problem (3) is further equivalent to

min
FTF=IC

||A− FFT ||2F (4)

where A ∈ Rn×n is the normalized similarity matrix and
computed by A = D−

1
2WD−

1
2 .

In (4), the normalized similarity matrix A is complete. For
an incomplete V -view dataset, we can construct {A(v)

}
V
v=1 on

each view independently, but each of A(v) may suffer from
some information missing. Inspired by the objective of (4),
in next section, we propose a method, which predict the miss-
ing values of {A(v)

}
V
v=1 and learn a common representation

matrix F simultaneously.

III. PROPOSED METHOD
To explore the complementary and diverse information of
multiple views, we construct a graph similarity matrix on
each view independently to reflect the similarity relationships
between pair of view samples. The v-th view graph matrix is
denoted by A(v)

= [a(v)ij ] ∈ Rn×n where its (i, j)-th element

a(v)ij measures the similarity between x(v)i and x(v)j . Since the

v-th view may suffer from some samples missing, a(v)ij can be
computed as follows

a(v)ij =

{
f (x(v)i , x

(v)
j ), if mvimvj = 1.

NaN , otherwise.
(5)

where f (x(v)i , x
(v)
j ) can be a traditional similarity computation

method such as [24], [25]. NaN denotes ‘‘not a number’’,
and can be regarded as a invalid number, which means
the information of a(v)ij is unaccessible. To eliminate the
influence of NaN in the subsequent calculating, we define
that 0 ·NaN = NaN · 0 = 0. Since n(v) samples appear in the
v-th view, n(v)× n(v) elements of A(v) are certain, and the rest
elements are uncertain.
To integrate processes of both similarity matrix completion

and clustering, based on these incomplete similarity matri-
ces {A(v)

}
V
v=1, we aim to learn complete similarity matrixes

{S(v)}Vv=1 and a common relaxed cluster indicator matrix F =
[f1; . . . ; fn] ∈ Rn×C simultaneously, where S(v) ∈ Rn×n is
the complete similarity matrix of A(v). fi = [fi1, . . . , fiC ] is
the label vector of the i-th instance xi, and its c-th element fic
satisfy the following constraint

fic =


1
√
n(c)

, if xi belongs to the c− th cluster.

0, otherwise.
(6)

where n(c) is the number of the instances belonging to the c-th
cluster (c = 1, . . . ,C). Based onF, the similarity information
can be reflected by FFT . Therefore, the optimization problem
can be written as

min
F,{S(v)}Vv=1

V∑
v=1

||S(v) − FFT ||2F

s.t. F ∈ CF ,2(v)
� S(v) = 2(v)

� A(v), (∀v) (7)

where CF is the constraint of F in (6), 2(v)
= mT

vmv ∈

{0, 1}n×n distinguish certain elements of A(v) from its uncer-
tain elements, and � denotes the element-wise product
between twomatrices. The constraint2(v)

�S(v) = 2(v)
�A(v)

makes sure that S(v) maintains the known entries of A(v).
However, solving the optimization problem (7) under such
constraint of F is NP-hard. Thus, we relax the constraint
of F as FTF = IC , and the resultant optimization problem
becomes

min
{S(v)}Vv=1,F

V∑
v=1

||S(v) − FFT ||2F

s.t. FTF = IC ,2(v)
� S(v) = 2(v)

� A(v),

S(v) > 0, (∀v) (8)

The nonnegative constraint S(v) > 0 is imposed to ensure that
S(v) is a similarity matrix. Although (8) connects processes
of both graph imputation and common representation learn-
ing, its performance can be improved due to the following
reasons: 1) all uncertain elements of {A(v)

}
V
v=1 are imputed
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based on the corresponding elements of FFT , which limits
the flexibility of {S(v)}Vv=1 to exploit the view-specific infor-
mation; 2) different views are treated equally, and they play
the same important roles in the learning stage of F, which
may suffer from performance degeneration when there are
unreliable views.

To design a more reasonable model, we introduce
view-specific representation matrices {F(v)

}
V
v=1, where the

v-th view representation matrix F(v)
= [f(v)1 ; . . . ; f

(v)
n ] ∈

Rn×C satisfies (F(v))TF(v)
= IC , and estimate the uncer-

tain elements of A(v) based on F(v)FT . The v-th view loss
J (S(v),F(v),F) are defined as follows

J (S(v),F(v),F) = ||S(v) − F(v)FT ||2F + λR(F(v),F) (9)

where λ > 0 is a balanced parameter, where R(F(v),F) is a
regularization term, which enforces F(v) and F to be approx-
imated. In this paper, we utilize R(F(v),F) = ||F(v)

− F||2F .
And for this regularization term, we give an explanation by
the following proposition.
Proposition 1: With constraints (F(v))TF(v)

= IC and
FTF = IC , to minimize the objective ||F(v)

− F||2F is equiv-
alent to maximize the objective tr(FTF(v)), which makes F(v)

and F maximally align with each other.
Proof: Since tr(FTF(v)) = tr[(F(v))TF], we have

||F(v)
− F||2F
= tr[(F(v)

− F)T (F(v)
− F)]

= tr[(F(v))TF(v)]+ tr(FTF)− 2tr(FTF(v))

= 2tr(IC )− 2tr(FTF(v)) (10)

Since tr(IC ) = C is a constant, we complete the proof. �
After proposing the loss functions of multiple views,

a rough and simple integration strategy to obtain the
multi-view formulation is to sum up them directly,
i.e.,

∑V
v=1 J (S(v),F(v),F). However, this strategy ignores the

various importance of views. A more reasonable integration
way is

∑V
v=1 ω

(v)J (S(v),F(v),F), where ω(v) is the v-th view
weight factor. Since the viewweight factors {ω(v)

}
V
v=1 are usu-

ally difficult to be predetermined, inspired by [26], we adopt
the p-th root integration strategy with 0 < p 6 1 to generate
the common objective function, i.e.,

∑V
v=1 J (S(v),F(v),F)p,

which utilizes an implicit way to automatically assign suit-
able view weights for each view according their losses. As a
result, the proposed MSCIG can be formulated as follows

min
ϒ

V∑
v=1

q
√
||S(v) − F(v)FT ||2F + λ||F

(v) − F||2F

s.t. FTF = IC ,2(v)
� S(v) = 2(v)

� A(v),

S(v) > 0, (F(v))TF(v)
= IC , (∀v) (11)

where ϒ = {{S(v),F(v)
}
V
v=1,F} collects all variables, and

q = 1
p is a parameter. The model ofMSCIG in (11) admits the

following advantages: 1) our objective function well targets
the ultimate goal, i.e., clustering, by integrating imputation
and spectral embedding into a unified learning framework;

2) our formulation utilizes {F(v)
}
V
v=1 to help F to complete

uncertain elements of each S(v), which enables {S(v)}Vv=1 to
capture view-specific information on their estimated ele-
ments; 3) our formulation weights different views automat-
ically, which makes views with smaller losses play more
important roles in the learning of common representation
matrix F; 4) our method does not require a complete view or
a instance present in all views, which is different from some
previous methods.

IV. OPTIMIZATION ALGORITHM
When 0 < p < 1, the p-th root integration strategy makes
the problem (11) difficult to solve directly. In this paper,
we obtain the solution of the problem (11) by solving the
following problem with a new introduced variable vector
α = [α1, . . . , αV ]T ∈ RV :

min
8

V∑
v=1

(αv)γ [||S(v) − F(v)FT ||2F + λ||F
(v)
− F||2F ]

s.t. 2(v)
� S(v) = 2(v)

� A(v), S(v) > 0, αv > 0

(F(v))TF(v)
= IC , (∀v), FTF = IC , αT 1V = 1 (12)

where8 = {{S(v),F(v)
}
V
v=1,α,F} collects all variables of the

problem (12), and γ = p−1
p is a parameter. In (12), the explicit

v-th viewweight factorω(v) can be calculated asω(v)
= (αv)γ ,

which is different from (11), where no viewweight factors are
explicitly defined.

A. UPDATING RULES
To solve the problem (12), an effective algorithm is
designed to update four groups of variables iteratively and
alternatively.

1) UPDATE {F(v)
}
V
v=1 AND FIX OTHERS

With {S(v)}Vv=1, α, and F fixed, the objective function (12)
w.r.t {F(v)

}
V
v=1 is additive and the constraints w.r.t {F(v)

}
V
v=1

are separable, and thus each F(v) can be updated by solving
the following problem

min
(F(v))TF(v)=IC

||S(v) − F(v)FT ||2F + λ||F
(v)
− F||2F (13)

Considering the constraint (F(v))TF(v)
= IC and removing the

constant terms, the problem (13) is equivalent to the following
problem

max
(F(v))TF(v)=IC

tr[(F(v))T (S(v)F+ λF)] (14)

To solve the problem (14), we introduce the following propo-
sition to obtain its close-form solution.
Proposition 2: Suppose the compact SVD of matrix

B(v)
= S(v)F+ λF is B(v)

= U(v)
B 6

(v)
B (V(v)

B )T ∈ Rn×C , where
U(v)
B ∈ Rn×C , 6(v)

B ∈ RC×C , and V(v)
B ∈ RC×C . Then the

optimal F(v) to the problem (14) is

F(v)
= U(v)

B (V(v)
B )T (15)
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Proof: Let the full SVD of B(v)
= S(v)F+ λF be B(v)

=

U(v)6(v)(V(v))T with U(v)
∈ Rn×n, 6(v)

∈ Rn×C , and V(v)
∈

RC×C . Therefore, the objective of (14) can be represented as

tr[(F(v))TB(v)] = tr[(F(v))TU(v)6(v)(V(v))T ]

= tr[6(v)(V(v))T (F(v))TU(v)]

= tr[6(v)Z(v)]

=

∑
i

σ
(v)
ii z

(v)
ii (16)

where Z(v)
= (V(v))T (F(v))TU(v)

∈ RC×n, σ (v)
ii and z(v)ii are

the (i, i)-th elements of 6(v) and Z(v), respectively. Since
Z(v)(Z(v))T = IC , we can concluded that each element of Z(v)

satisfies −1 6 z(v)ij 6 1. On the other hand, since σ (v)
ii is a

singular value, there is σ (v)
ii > 0. As a result, we arrive that

tr[(F(v))TB(v)] =
∑
i

σ
(v)
ii z

(v)
ii 6

∑
i

σ
(v)
ii (17)

The equality in (17) holds when all z(v)ii = 1. That is to say,
tr[(F(v))TB(v)] reaches its maximum when Z(v)

= [IC , 0] ∈
RC×n. Since Z(v)

= (V(v))T (F(v))TU(v), the optimal F(v) to
the problem (14) can be written as

F(v)
= U(v)[IC ; 0](V(v))T (18)

Since (18) is based upon the full SVD of matrix B(v), it can
be rewritten as F(v)

= U(v)
B (V(v)

B )T via the compact SVD of
matrix B(v)

= U(v)
B 6

(v)
B (V(v)

B )T . �

2) UPDATE {S(v)
}
V
v=1 AND FIX OTHERS

With α, F, and {F(v)
}
V
v=1 fixed, the relations among multiple

views are decoupled. By removing the constant terms, each
S(v) can be updated individually by solving the following
problem

min
S(v)
||S(v) − F(v)FT ||2F

s.t. 2(v)
� S(v) = 2(v)

� A(v), S(v) > 0 (19)

To solve the problem (19), we introduce a matrixE(v)
∈ Rn×n

calculated by E(v)
= max(F(v)FT , 0). And then we can write

the optimal solution to the problem (19) as the following form

S(v) = E(v)
+2(v)

� (A(v)
− E(v)) (20)

From (20), we can see that the optimal S(v) is a duplicated
of A(v) on its known entries, and the uncertain elements are
imputed by those of E(v).

3) UPDATE F AND FIX OTHERS
With {F(v)

}
V
v=1, {S

(v)
}
V
v=1, and α fixed, by considering the

constraint FTF = IC and removing the constant term,
the problem (12) w.r.t. F can be transformed into

max
FTF=IC

tr{FT
V∑
v=1

(αv)γ [(S(v))TF(v)
+ λF(v)]} (21)

Denote C =
∑V

v=1(αv)
γ [(S(v))TF(v)

+ λF(v)] ∈ Rn×C .
Suppose that the compact SVD of C is C = UC6C (VC )T

withUC ∈ Rn×C ,6C ∈ RC×C , andVC ∈ RC×C . According
to Proposition 2, the optimal F to the problem (21) can be
obtained by

F = UC (VC )T (22)

4) UPDATE α AND FIX OTHERS
With F, {F(v)

}
V
v=1, and {S

(v)
}
V
v=1 fixed, we can compute the

losses {J (S(v),F(v),F)}Vv=1 of multiple views by (9) accord-
ingly. And the problem (12) w.r.t. α can be rewritten as the
following form

min
αv>0,αT 1V=1

V∑
v=1

(αv)γJ (S(v),F(v),F) (23)

When γ = 0, i.e., p = 1, the p-root integration strategy
degenerates into the simple adding integration strategy, and
we can set all αv = 1/V . When γ < 0, i.e., 0 < p < 1,
the Lagrangian function of the problem (23) can be written
as Lµ =

∑V
v=1(αv)

γJ (S(v),F(v),F) − µ(αT 1V − 1), where
µ is the Lagrange multiplier. Setting the derivative ofLµ with
respect to αv to zero and combining the constraint αT 1V = 1,
the closed-form solution of the problem (23) can be rewritten
as follows

αv =
[J (S(v),F(v),F)]

1
1−γ∑V

v=1[J (S(v),F(v),F)]
1

1−γ

(24)

B. INITIALIZATION
According to the above four steps, we alternatively update
{F(v)
}V , {S(v)}V , F as well as α, and repeat these procedures

iteratively until the objective of the problem (12) converges.
Since we adopt an alternative and iterative updating strategy,
it is important to have a reasonable initialization.We initialize
all αv = 1/V , which treats all views equally. For all S(v),
we initialize its element s(v)ij according to the following way

s(v)ij =


a(v)ij , if θ (v)ij = 1.∑V

v=1 θ
(v)
ij a

(v)
ij∑V

v=1 θ
(v)
ij

, otherwise.
(25)

where θ (v)ij is the (i, j)-th element of 2(v). From (25), if a(v)ij
is uncertain, s(v)ij is initialized by the average of correspond-

ing certain elements of {a(v)ij }
V
v=1. After obtaining initial-

ized {S(v)}Vv=1, we obtain a fusion graph by adding them up
directly, i.e.,

∑V
v=1 S

(v), and then initialize F by solving the
following problem

max
FTF=IC

tr[FT (
V∑
v=1

S(v))F] (26)

In this paper, we solve the problem (26) by an iterative
algorithm proposed in [27].

The entire optimization procedure of the optimization
problems (11), and (12) are summarized in Algorithm 1.
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Algorithm 1 Optimization of MSCIG

Input: Incomplete V view data {X(v)
}
V
v=1, indicator matrix

M, parameters p, and λ.
Output: F, α, {F(v)

}
V
v=1, and {S

(v)
}
V
v=1.

Initialization:
Construct {A(v)

}
V
v=1 by (5).

Initialize all αv = 1/V .
Initialize {S(v)}Vv=1 according to (25).
Initialize F by solving the problem (26).
While not converged do
1: Update {F(v)

}
V
v=1 with (15).

2: Update {S(v)}Vv=1 with (20).
3: Update F with (22).
4: Update α with (24).
End While

V. ANALYSIS
In this section, we first analyze the convergence behavior of
the proposed Algorithm 1, and then analyze its computational
complexity.

A. CONVERGENCE BEHAVIOR
Proposition 3: Algorithm 1 will monotonically decrease

the objective of problem (12) until it converges to a stationary
point of the problem (12).

Proof: In each iteration, denote the updated F(v), S(v), F,
and α as F̃(v), S̃(v), F̃, and α̃, respectively. In Algorithm 1,
the original problem (12) is divided into four groups of
subproblems w.r.t. {F(v)

}
V
v=1, {S

(v)
}
V
v=1, F, and α, respec-

tively. Since F̃(v), S̃(v), F̃, and α̃ are the optimal solutions
to their corresponding subproblems, Algorithm 1 decreases
the objective of the problem (12) alternatively and iteratively.
Since the objective of the problem (12) is lower bounded
by 0, Algorithm will converge. Denote the converged F(v),
S(v), F, and α as F̂(v), Ŝ(v), F̂, and α̂, respectively. In the con-
vergence, {{F̂(v), Ŝ(v)}Vv=1, F̂, α̂} satisfies the KKT conditions
of the problem (12), and thus it is a stationary point of the
problem (12). �
Proposition 4: Each {{F̃(v), S̃(v)}Vv=1, F̃} in Algorithm 1will

monotonically decrease the objective of problem in each iter-
ation, which makes {{F̂(v), Ŝ(v)}Vv=1, F̂} be at least a stationary
point of the problem (11).

Proof: According to Proposition 3, we obtain inequality∑V
v=1 α

γ
v J (F̃(v), S̃(v), F̃) 6

∑V
v=1 α

γ
v J (F(v),S(v),F). Con-

sidering (24) and γ = p−1
p , we can concluded that

V∑
v=1

J (F̃(v), S̃(v), F̃)
J (F(v),S(v),F)1−p

6
V∑
v=1

J (F(v),S(v),F)p (27)

On the other hand, we define function g(x) = xp

and the supergradient of g(x) is g′(x) = pxp−1. When
0 < p < 1, g(J (F(v),S(v),F)) is a concave function in
the domain of J (F(v),S(v),F), and g′(J (F(v),S(v),F)) =
pJ (F(v),S(v),F)p−1. Based on the definition of supergradient

of a concave function, the following inequality holds:

g(x̃)− g(x) ≤ g′(x)(x̃ − x) (28)

Replacing x̃, and x with J (F̃(v), S̃(v), F̃), and J (F(v),S(v),F),
respectively, we can infer that

V∑
v=1

J (F̃(v), S̃(v), F̃)p −
V∑
v=1

pJ (F̃(v), S̃(v), F̃)
J (F(v),S(v),F)1−p

≤

V∑
v=1

J (F(v),S(v),F)p −
V∑
v=1

pJ (F(v),S(v),F)p (29)

Based on (27) and (29), we arrive that
V∑
v=1

J (F̃(v), S̃(v), F̃)p 6
V∑
v=1

J (F(v),S(v),F)p (30)

Therefore, each {{F̃(v), S̃(v)}Vv=1, F̃} will monotonically
decrease the objective of the problem (11).

According to Proposition 3, {{F̂(v), Ŝ(v)}Vv=1, F̂, α̂} is a sta-
tionary point of the problem (12). By replacing αv according
to (24), {{F̂(v), Ŝ(v)}Vv=1, F̂} is a stationary point of the follow-
ing problem

min
ϒ∈C

[
V∑
v=1

J (F(v),S(v),F)p]
1
p (31)

where C collects the constraints of ϒ in (11). When 0 <

p 6 1, the problem (31) and the problem (11) are equivalent.
Thus, {{F̂(v), Ŝ(v)}Vv=1, F̂} satisfies the KKT conditions of the
problem (11). �

B. COMPUTATIONAL COMPLEXITY
In this subsection, we analyze the computational complexity
of the proposed Algorithm 1.

In initialization, the computational complexity of the con-
struction of {A(v)

}
V
v=1 and the initialization of {S(v)}Vv=1 is

upper bounded by O(n2d); the initialization of F costs
O(n2V + (n2C + C3)τ ), where τ is the number of iterations
of the algorithm proposed in [27] to solve (26).

In each iteration, the computational complexity to update
{F(v)
}
V
v=1 is O(n2CV + C3V ); the computational complex-

ity to update {S(v)}Vv=1 is upper bounded by O(n2CV ); the
computational complexity to update F is O(n2CV + C3);
the computational complexity to update α is upper bounded
by O(n2V + nCV ).
Since C � n, the overall computational complexity of

Algorithm 1 is O(n2(d + Cτ + CVt)), where t is the number
of iterations of the proposed Algorithm 1.

VI. EXPERIMENT
In this section, we conduct experiments to evaluate the perfor-
mance of the proposed algorithm. First, we evaluate the effec-
tiveness of MSCIG by comparing its clustering performance
with some baselines. Then, we present experimental results
about convergence behavior. Finally, we study the parameter
sensitivity.
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A. DATASET DESCRIPTION
The experiments are conducted on 9 datasets, i.e., 3Sourse,1

BBCSport,2 BBC,3 Dermatology,4 Forest,5 WebKB,6 Yale,7

MSRC-v1,8 and Dights.9 The detailed descriptions of these
datasets are listed as follows.

• 3Sourse includes 416 news stories collected from three
online news sources: BBC, Reuters, and The Guardian.
The stories belong to 6 classes, i.e., 104 business stories,
60 entertainment stories, 54 health stories, 49 politics
stories and 89 sport stories and 60 tech stories. Since
some news may not be reported by all sources, three
views have 352, 302, and 294 present samples.

• BBCSport is composed of 737 news documents [28]
divided into 5 classes: 101 athletics documents,
124 cricket documents, 265 football documents,
147 rugby documents, and 100 tennis documents.
In [29], each raw document is split into 1–3 segments
by merging consecutive paragraphs, and this process
ensures that each segment has at least 200 words. Each
segment is assigned to at most one view, and three views
have 519, 531, and 513 present samples, respectively.

• BBC consists of 2225 news documents [28] belong-
ing to 5 classes: 510 business documents, 386 enter-
tainment documents, 417 politics documents, 511 sport
documents, and 401 tech documents. In [29], each raw
document is split into 1–3 segments, and each segment
is assigned to one view. Its three views have 1828, 1832,
and 1845 present samples, respectively.

• Dermatology is about erythemato-squamous dis-
eases [30] which contains 336 instances from
6 classes: psoriasis (112 patients), seboreic dermati-
tis (61 patients), lichen planus (72 patients), pityriasis
rosea (49 patients), cronic dermatitis (52 patients), and
pityriasis rubra pilaris (20 patients). Each patient has
11 complete clinical attributes and 22 histopathological
attributes.

• Forest includes multi-temporal remote sensing data for
a forested area [31]. It is composed of 523 data points
belonging to 4 classes, i.e., ‘Sugi’ forest, ‘Hinoki’ forest,
‘Mixed deciduous’ forest and ‘Other’ non-forest land.
Each data point has 9 ASTER image bands features and
18 predicted spectral value features.

• WebKB is composed of 1051 web documents [32]
divided into 2 classes: 230 Course pages and 821 Non-
Course pages. Each instance has two representations:
2949 Fulltext features describe the textual contents on

1http://mlg.ucd.ie/datasets/3sources.html
2http://mlg.ucd.ie/datasets/segment.html
3http://mlg.ucd.ie/datasets/segment.html
4https://archive.ics.uci.edu/ml/datasets/dermatology
5https://archive.ics.uci.edu/ml/datasets/Forest+type+mapping
6http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/
7http://vision.ucsd.edu/content/yale-face-database
8https://www.microsoft.com/en-us/research/project/
9https://archive.ics.uci.edu/ml/datasets/Multiple+Features

the web page, while 334 Inlinks features records the
anchor information on the hyperlinks.

• Yale consists of 165 face images belonging to 15 per-
sons, and each person has 11 images. We extract three
features for each image, i.e., 512GIST, 256 Local Binary
Pattern (LBP) and 168 Pyramid HOG (PHOG).

• MSRC-v1 is composed of 240 images belonging to
8 categories. Following [33], we select 7 widely utilized
categories, i.e., tree, building, airplane, cow, face, car,
bicycle, and each category has 30 images. For each
image, we extract six features, i.e., 1302 CENTRIST,
256 LBP, 48 Color Moment (CMT), 100 Histogram of
Oriented Gradient (HOG), 200 SIFT and 512 GIST.

• Digits includes 2,000 instances for 0 to 9 ten digit
classes, and each class has 200 instances. Six public
features are available, i.e., 76 Fourier coefficients of the
character shapes (FOU), 216 profile correlations (FAC),
64 Karhunen-love coefficients (KAR), 240 pixel aver-
ages in 2×3 windows (PIX), 47 Zernike moment (ZER)
and 6 morphological (MOR) features.

B. EXPERIMENTAL SETUP
1) DATA PRECESSING
Since six datasets Dermatology, Forest, WebKB, Yale,
MSRC-v1, and Dights are originally complete, we ran-
domly delete some view samples to simulate the incomplete
multi-view setting. Concretely, there is a probability to delete
each x(v)i , and we ensure that each data point xi has at least one
x(v)i remaining. In the experiments, we tune the probability
form 10% to 50% with a step 10% on these six datasets.
And we can regard the probability as the incomplete example
ratio (IER) of all views of the dataset.

2) BASELINES AND EXPERIMENTAL ENVIRONMENT
In the experiments, we compare the proposed MSCIG with
six state-of-the-art methods:Multiple Incomplete viewsClus-
tering (MIC) [14], Multi-view Learning with Incomplete
Views (MVL-IV) [16], Incomplete Multi-modality Group-
ing (IMG) [9], Doubly Aligned Incomplete Multi-view
Clustering (DAIMC) [15], Incomplete Multiple Kernel
K-means Algorithm with Mutual Kernel Completion [19]
(IMKK-MKC) and Perturbation-oriented Incomplete multi-
view Clustering (PIC) [23]. Since IMG is originally designed
for incomplete two-view data, we extend it by [22], and
thus the extended version can deal with data with arbitrary
incomplete views. For fair comparison, all comparedmethods
apply K-means on their corresponding common representa-
tions to extract clustering results. All the experiments are con-
ducted by Matlab2016a on a laptop with Intel(R) Core(TM)
i7-7500U CPU (2.9GHz) and 8.0GB RAM memory on the
Windows 10 operating system.

3) PARAMETER DETERMINATION
In the experiments, we determine all hyper-parameters by
grid-search, and record the clustering results with the best
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TABLE 1. ACC (%) and NMI (%) comparisons on 3 datasets. STD (%) is in the parentheses. The first highest score is in bold. Symbols ‘•/�/◦’ denote that
MSCIG is better/tied/worse than the corresponding method by the paired t-test with confidence level 0.05, respectively.

tuned parameters. For the baselines, we download the source
codes from the authors’ websites and determine the searching
ranges of their parameters according to the corresponding
papers. For the proposed MSCIG, we construct the partial
similarity matrices based on [24], tune the parameter p from
0.1 to 0.9 with a step 0.2, and tune the parameter λ from in
the range of {10−4, 10−3, 10−2, 10−1, 1}. In the construction
of partial similarity matrix, we set the neighbor number to
be 15 for 3Sourse, BBC, and BBCSport, and we fix the
neighbor number as 5 for Dermatology, Forest,WebKB, Yale,
MSRC-v1, and Dights. For all compared algorithms which
adopt iterative optimization strategy, we adopt the following
stop criteria

f (t − 1)− f (t)
f (t − 1)

< 10−5 (32)

where f (t) is the objective value in the t-th iteration.

4) EVALUATION METRIC
The clustering performance is measured in terms of accu-
racy (ACC) and the normalized mutual information (NMI).
On datasets 3Sourse, BBC, and BBCSport, we run each
comparedmethod for 5 independent times. On each dataset of
Dermatology, Forest, WebKB, Yale, MSRC-v1, and Dights,
every time we create incomplete datasets with different IERs
and repeat 5 independent times. And we report the average
result with standard deviation (STD).

C. CLUSTERING PERFORMANCE
Table 1 displays the clustering results of seven compared
methods with respect to both ACC and NMI on three incom-
plete multi-view datasets. Table 2 and Table 3 show the ACC
and NMI comparisons of all seven compared methods on
six datasets in incomplete multi-view setting with respect
to different incomplete example ratios. According to results,
we have the following observations.

As shown from the clustering results on Table 1 and the
win/tie/loss counts in last rows of Table 2 and Table 3, the pro-
posed MSCIG consistently achieves better or comparable
performance than other methods in terms of both ACC and
NMI. This may be because the integration of missing element
imputation and representation learning enables the completed
similarity matrices to measure the relationships between
pair of view samples more accurately, and the common
representation matrix to better reflect the underlying cluster-
ing structure of data.

MIC achieves the worst results on datasets 3Sourse,
BBCSport, and BBC, and its performance degenerates more
significantly than other methods with the increase of IER on
datasets MSRC-v1, Digits, Yale, and Forest. This might be
because that MIC simply utilizes the feature average of each
view to fill the missing samples, which leads to a deviation
especially when IER is large.

Comparing the performance of matrix factorization-based
methods MVL-IV, IMG, and DAIMC, each of them achieves
better results on several datasets but performs worse on other
datasets. This can be owing to that these methods adopt
different norms, regularization terms and constraints, which
makes them good at clustering several datasets but bad at
grouping others.

PIC achieves comparable results with MSCIG in a few
cases but performs significantly worse on some datasets such
as BBCSport, BBC, and WebKB, indicating that using the
average of certain elements to fill the corresponding missing
entries is not always an advisable manner to deal with incom-
plete similarity matrices. On datasets BBCSport, BBC, and
Yale, IMKK-MKC achieves better performance than matrix
factorization-based methods, and the possible reason is that
IMKK-MKC can utilize the non-linear information. On the
other hand, IMMK-MKC achieves the worst performance on
Digits in some cases, and this might be because the construc-
tion of kernels ignores the local structure of data.

With the increase of IER, each method tends to achieve
worse clustering performance in most cases. An exception is
the clustering results onWebKB. Since both views ofWebKB
are sparse, the lack of certain samples may make methods fail
to achieve reasonable clustering results. This also possibly
explains why STD of MVL-IV, PIC, and MSCIG are high in
some cases.

D. CONVERGENCE ANALYSIS
In Section V-A, we have proved the proposed
Algorithm 1 will monotonically decrease the objective values
of both (11) and (12) in each iteration until convergence.

In this subsection, we verify the convergence behavior of
Algorithm 1 by conducting experiments on datasets 3Sourse,
BBCSport3, Dermatology, and Forest. On Dermatology, and
Forest, we set IER = 30%. For MSCIG, we fix p = 0.9 and
γ = 10−2. We plot the curves of objective values of (11)
and (12) in Fig. 2. As we can see, on these four datasets,
both the objective values of (11) and (12) decrease as the
iteration round increases and converge to fixed values within
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TABLE 2. ACC (%) comparisons on 6 datasets with different IERs. STD (%) is in the parentheses. The first highest score is in bold. Symbols ‘•/�/◦’ denote
that MSCIG is better/tied/worse than the corresponding method by the paired t-test with confidence level 0.05, respectively. The win/tie/loss counts are
reported in the last row.

FIGURE 2. The convergence curves of (11) and (12) on 4 datasets.

30 iterations, indicating that Algorithm 1 has fine conver-
gence speed.

E. PARAMETER STUDY
In this section, we study the influence of hyper-parameters
on the performance of the proposed MSCIG. There are two
nonnegative parameters in MSCIG, i.e., p and γ . We tune
p in the range of {0.1, 0.3, 0.5, 0.7, 0.9} while we vary γ
from {10−4, 10−3, 10−2, 10−1, 1}. We conduct experiments
on 4 datasets, i.e., 3Sourse, BBCSport, Dermatology, and
Forest, and we set IER = 30% on datasets Dermatology,
and Forest. Since NMI has similar tendency with ACC,
Fig. 3 displays ACC results with varying p and γ .
As seen from the results, we have the following obser-

vations. On 3Sourse, MSCIG achieves acceptable perfor-
mance in a wide range of parameters. On the other three

datasets, the value variation of γ has larger effect on the
performance of MSCIG than that of p. Besides, MSCIG has
different optimal parameters on 4 datasets, indicating the
optimal parameters are data independent. These 4 datasets
have different optimal combination of p and γ since their data
characteristics are different.

F. SUMMARY OF EXPERIMENTAL RESULTS
In this section, we verify the effectiveness of the
proposed MSCIG by comparing with six state-of-art incom-
plete multi-view clustering methods. The experiments are
conducted on nine datasets, and both ACC and NMI results
demonstrate the advantage of MSCIG. Besides, we plot
objective value curves of (11), and (12) on four datasets.
The results show that Algorithm 1 monotonically decreases
the objective values of both (11), and (12) until convergence
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TABLE 3. NMI (%) comparisons on 6 datasets with different IERs. STD (%) is in the parentheses. The first highest score is in bold. Symbols ‘•/�/◦’ denote
that MSCIG is better/tied/worse than the corresponding method by the paired t-test with confidence level 0.05, respectively. The win/tie/loss counts are
reported in the last row.

FIGURE 3. Sensitivity analysis on p and γ .

and has fast convergence property. Moreover, we conduct
experiments on four datasets to study the influence of the
parameters on the performance of MSCIG. From the results,
we can see that the optimal parameters are data independent,
and how to determine them is still an open problem.

VII. CONCLUSION
In this paper, we propose MSCIG to cluster incomplete
multi-view data, which integrates processes of both graph
imputation and spectral embedding seamlessly to achieve
better clustering performance. To solve the resultant problem
of MSCIG, we design an optimization algorithm with proved
convergence which updates common representation matrix,
view-specific representation matrices, similarity matrices,
and view weights alternatively and iteratively. The proposed

MSCIG is evaluated on nine real-world datasets, and experi-
mental results demonstrate its effectiveness. Inspired by [34],
in the future, we plan to design a new regularization term on
view-specific representations to meet the inconsistency and
further improve the performance of MSCIG. Also, we want
to improve the proposed method by taking the correlations
of similarity matrices into account. Besides, extending the
proposedMSCIG for incomplete multi-view semi-supervised
classification is an interesting task.

REFERENCES
[1] J. Zhao, X. Xie, X. Xu, and S. Sun, ‘‘Multi-view learning overview: Recent

progress and new challenges,’’ Inf. Fusion, vol. 38, pp. 43–54, Nov. 2017.
[2] H. Tao, C. Hou, F. Nie, J. Zhu, and D. Yi, ‘‘Scalable multi-view semi-

supervised classification via adaptive regression,’’ IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4283–4296, Sep. 2017.

VOLUME 8, 2020 99829



W. Zhuge et al.: Multi-View Spectral Clustering With Incomplete Graphs

[3] F. Nie, J. Li, and X. Li, ‘‘Parameter-free auto-weighted multiple graph
learning: A framework for multiview clustering and semi-supervised clas-
sification,’’ in Proc. IJCAI, 2016, pp. 1881–1887.

[4] M. Karasuyama and H. Mamitsuka, ‘‘Multiple graph label propagation by
sparse integration,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12,
pp. 1999–2012, Dec. 2013.

[5] S. Sun, ‘‘A survey of multi-viewmachine learning,’’Neural Comput. Appl.,
vol. 23, nos. 7–8, pp. 2031–2038, Dec. 2013.

[6] C. Hou, C. Zhang, Y. Wu, and F. Nie, ‘‘Multiple view semi-supervised
dimensionality reduction,’’ Pattern Recognit., vol. 43, no. 3, pp. 720–730,
Mar. 2010.

[7] A. Trivedi, P. Rai, H. Daumé, III, and S. L. DuVall, ‘‘Multiview clustering
with incomplete views,’’ in Proc. NIPS Workshop, vol. 224, 2010, pp. 1–7.

[8] S.-Y. Li, Y. Jiang, and Z.-H. Zhou, ‘‘Partial multi-view clustering,’’ inProc.
AAAI, 2014, pp. 1968–1974.

[9] H. Zhao, H. Liu, and Y. Fu, ‘‘Incomplete multi-modal visual data group-
ing,’’ in Proc. IJCAI, 2016, pp. 2392–2398.

[10] N. Xu, Y. Guo, X. Zheng, Q. Wang, and X. Luo, ‘‘Partial multi-view
subspace clustering,’’ in Proc. ACM Multimedia Conf. (MM), 2018,
pp. 1794–1801.

[11] Q. Yin, S. Wu, and L. Wang, ‘‘Incomplete multi-view clustering via
subspace learning,’’ in Proc. 24th ACM Int. Conf. Inf. Knowl. Manage.
(CIKM), 2015, pp. 383–392.

[12] Q. Yin, S. Wu, and L. Wang, ‘‘Unified subspace learning for incomplete
and unlabeled multi-view data,’’ Pattern Recognit., vol. 67, pp. 313–327,
Jul. 2017.

[13] L. Zhao, Z. Chen, Y. Yang, Z. J. Wang, and V. C. M. Leung, ‘‘Incom-
plete multi-view clustering via deep semantic mapping,’’Neurocomputing,
vol. 275, pp. 1053–1062, Jan. 2018.

[14] W. Shao, L. He, and P. S. Yu, ‘‘Multiple incomplete views clustering via
weighted nonnegative matrix factorization with L2,1 regularization,’’ in
Proc. ECML PKDD, 2015, pp. 318–334.

[15] M. Hu and S. Chen, ‘‘Doubly aligned incomplete multi-view clustering,’’
in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 2262–2268.

[16] C. Xu, D. Tao, and C. Xu, ‘‘Multi-view learning with incomplete views,’’
IEEE Trans. Image Process., vol. 24, no. 12, pp. 5812–5825, Dec. 2015.

[17] H. Tao, C. Hou, D. Yi, and J. Zhu, ‘‘Unsupervised maximum margin
incomplete multi-view clustering,’’ in Proc. ICAI, 2018, pp. 13–25.

[18] S. Bhadra, S. Kaski, and J. Rousu, ‘‘Multi-view kernel completion,’’Mach.
Learn., vol. 106, no. 5, pp. 713–739, May 2017.

[19] X. Liu, W. Gao, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft,
D. Shen, and J. Yin, ‘‘Multiple kernel k-means with incomplete kernels,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 5, pp. 1191–1204,
May 2020.

[20] H. Gao, Y. Peng, and S. Jian, ‘‘Incomplete multi-view clustering,’’ in Proc.
ICIIP, 2016, pp. 245–255.

[21] J. Wen, Y. Xu, and H. Liu, ‘‘Incomplete multiview spectral clustering
with adaptive graph learning,’’ IEEE Trans. Cybern., vol. 50, no. 4,
pp. 1418–1429, Apr. 2020.

[22] W. Zhuge, C. Hou, X. Liu, H. Tao, andD. Yi, ‘‘Simultaneous representation
learning and clustering for incomplete multi-view data,’’ in Proc. IJCAI,
Aug. 2019, pp. 4482–4488.

[23] H. Wang, L. Zong, B. Liu, Y. Yang, and W. Zhou, ‘‘Spectral pertur-
bation meets incomplete multi-view data,’’ in Proc. IJCAI, Aug. 2019,
pp. 3677–3683.

[24] L. Zelnik-Manor and P. Perona, ‘‘Self-tuning spectral clustering,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 17, 2004, pp. 1601–1608.

[25] F. Nie, X. Wang, M. I. Jordan, and H. Huang, ‘‘The constrained
Laplacian rank algorithm for graph-based clustering,’’ inProc. AAAI, 2016,
pp. 1969–1976.

[26] L. Tian, F. Nie, and X. Li, ‘‘A unified weight learning paradigm for multi-
view learning,’’ in Proc. AISTATS, 2019, pp. 2790–2800.

[27] F. Nie, R. Zhang, and X. Li, ‘‘A generalized power iteration method for
solving quadratic problem on the stiefel manifold,’’ Sci. China Inf. Sci.,
vol. 60, no. 11, pp. 146–155, Nov. 2017.

[28] D. Greene and P. Cunningham, ‘‘Practical solutions to the problem of
diagonal dominance in kernel document clustering,’’ in Proc. 23rd Int.
Conf. Mach. Learn. (ICML), 2006, pp. 377–384.

[29] D. Greene and P. Cunningham, ‘‘A matrix factorization approach for inte-
grating multiple data views,’’ in Proc. ECML PKDD, 2009, pp. 423–438.

[30] H. A. Güvenir, G. Demiröz, and N. Ilter, ‘‘Learning differential diagnosis
of erythemato-squamous diseases using voting feature intervals,’’ Artif.
Intell. Med., vol. 13, no. 3, pp. 147–165, Jul. 1998.

[31] B. Johnson, R. Tateishi, and Z. Xie, ‘‘Using geographically weighted
variables for image classification,’’ Remote Sens. Lett., vol. 3, no. 6,
pp. 491–499, Nov. 2012.

[32] V. Sindhwani, P. Niyogi, and M. Belkin, ‘‘Beyond the point cloud:
From transductive to semi-supervised learning,’’ in Proc. ICML, 2005,
pp. 824–831.

[33] Y. J. Lee and K. Grauman, ‘‘Foreground focus: Unsupervised learning
from partially matching images,’’ Int. J. Comput. Vis., vol. 85, no. 2,
pp. 143–166, Nov. 2009.

[34] Y. Liang, D. Huang, and C.-D. Wang, ‘‘Consistency meets inconsistency:
A unified graph learning framework for multi-view clustering,’’ in Proc.
IEEE Int. Conf. Data Mining (ICDM), Nov. 2019, pp. 1204–1209.

WENZHANG ZHUGE received the B.S. degree
from Shandong University, Jinan, China, in 2015,
and the M.S. degree from the National Univer-
sity of Defense Technology, Changsha, China,
in 2017. He is currently pursuing the Ph.D.
degree with the National University of Defense
Technology, Changsha. His research interests
includemachine learning, system science, and data
mining.

TINGJIN LUO received the B.S., master’s and
Ph.D. degrees from the National University of
Defense Technology, Changsha, China, in 2011,
2013, and 2018, respectively. He is currently a
Lecturer with the College of Science, National
University of Defense Technology. He was a visit-
ing Ph.D. student with the University of Michigan,
Ann Arbor, USA, from 2015 to 2017. He has
authored more than 15 articles in journals and
conferences, such as the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, the IEEE TRANSACTIONS ON CYBERNETICS,
the IEEE TRANSACTIONS ON IMAGE PROCESSING, KDD, and so on. He has been a
ProgramCommittee member of several conferences including IJCAI, AAAI,
and so on. His research interests include machine learning, multi-media
analysis, optimization, and computer vision.

HONG TAO received the Ph.D. degree from
the National University of Defense Technology,
Changsha, China, in 2019. She is currently a Lec-
turer with the College of Liberal Arts and Science,
National University of Defense Technology. Her
research interests include machine learning, sys-
tem science, and data mining.

99830 VOLUME 8, 2020



W. Zhuge et al.: Multi-View Spectral Clustering With Incomplete Graphs

CHENPING HOU (Member, IEEE) received the
Ph.D. degree from the National University of
Defense Technology, Changsha, China, in 2009.
He is currently a Full Professor with the Depart-
ment of Systems Science, National University
of Defense Technology. He has authored more
than 80 peer-reviewed articles in journals and
conferences, such as the IEEE TRANSACTIONS ON

PATTERNANALYSISANDMACHINE INTELLIGENCE, IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYESTEMS/IEEE TRANSACTIONS ON NEURAL NETWORKS, the IEEE TRANSACTIONS

ON SYSTEMS,MAN, AND CYBERNETICS–PART B: CYBERNETICS/TCB, the IEEE
TRANSACTIONS ON IMAGE PROCESSING, the IJCAI, and AAAI. His current
research interests include machine learning, data mining, and computer
vision.

DONGYUN YI received the B.S. degree from
Nankai University, Tianjin, China, and the M.S.
and Ph.D. degrees from the National University
of Defense Technology, Changsha, China. He was
a Visiting Researcher with the University of War-
wick, Coventry, U.K., in 2008. He is currently a
Professor with the College of Science, National
University of Defense Technology. His current
research interests include statistics, systems sci-
ence, and data mining.

VOLUME 8, 2020 99831


	INTRODUCTION
	BACKGROUND
	PROBLEM SETTING
	CLASSIC NORMALIZED CUT AND MOTIVATION

	PROPOSED METHOD
	OPTIMIZATION ALGORITHM
	UPDATING RULES
	UPDATE {F(v)}Vv=1 AND FIX OTHERS
	UPDATE {S(v)}Vv=1 AND FIX OTHERS
	UPDATE F AND FIX OTHERS
	UPDATE bold0mu mumu  AND FIX OTHERS

	INITIALIZATION

	ANALYSIS
	CONVERGENCE BEHAVIOR
	COMPUTATIONAL COMPLEXITY

	EXPERIMENT
	DATASET DESCRIPTION
	EXPERIMENTAL SETUP
	DATA PRECESSING
	BASELINES AND EXPERIMENTAL ENVIRONMENT
	PARAMETER DETERMINATION
	EVALUATION METRIC

	CLUSTERING PERFORMANCE
	CONVERGENCE ANALYSIS
	PARAMETER STUDY
	SUMMARY OF EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	WENZHANG ZHUGE
	TINGJIN LUO
	HONG TAO
	CHENPING HOU
	DONGYUN YI


