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ABSTRACT

The relationships and interactions between objects contain
rich semantic information, which plays a crucial role in scene
understanding. Existing methods do not attach great impor-
tance to the expression of relational features. To tackle this
problem, we propose a novel Relationship-aware Primal-Dual
Graph Attention Network (RPDGAT) to extract the compre-
hensive semantic features of objects and explore the sparse
graph inference for scene graph generation. RPDGAT mines
the inherent attributes and the relationships between objects
by fusing multiple features, e.g. appearance, spatial, and cat-
egory features. After feature extraction, we design a trainable
relationship distance measure network to construct the ro-
bust and sparse graph structure for efficient graphical message
passing. Moreover, it can preserve the contextual cues and
neighboring dependency for objects and relationships from
the interaction between primal and dual graphs. Extensive ex-
perimental results present the improved performance of our
method over several state-of-the-art methods on the visual
genome datasets.

Index Terms— Scene graph generation, Sparse graph,
Primal-dual graph attention network, Graph inference

1. INTRODUCTION

A deep understanding of the visual scene plays an important
role in computer vision and machine learning. Scene graph
generation (SGG) [1, 2, 3] is a frequently common and ef-
fective way to derive the rich semantic information of image
data and help understand the visual scene by constructing the
structured expression. Different from the independent object
tasks, SGG can capture the objects and semantic relationships
between object pairs, which can be widely used in many high-
level vision applications, such as image retrieval [1], VQA
[3], and image caption [2], and so on.

In literature, there have been many methods [4, 5] pro-
posed to generate the scene graph of an image. Most of them
centered on exploring more effective ways of feature extrac-
tion and graph inference in visual scene. For the feature ex-
traction, Ren et al. [6, 7, 8, 9, 10] proposed the ROI features
extracted from Fast RCNN for subsequent inference. Chen et
al. [11, 12] pointed out that the spatial features or category
features of objects also bring great value for inferring scene

graph. Therefore, they imposed the spatial configurations and
category distributions as complementary to the appearance
features. For the graph inference, constructing dense graph
[8, 13, 10] or pruning graph [9, 11, 14] are the two main-
stream methods. Chen et al. [12, 7] built the fully connected
graph for all objects and adopted the CRF and GRU mod-
ules to achieve feature interactions based on the graph infer-
ence. Besides, Yang et al. [9, 11, 15] proposed to construct
the sparse graph by pruning some edges from dense graphs
and implemented more efficient and accurate message pass-
ing based on GAT and Tree structured LSTM.

Although several SGG methods are presented with good
performance, they have the following two main drawbacks.
On the one hand, current methods often extract the appear-
ance features and ignore the semantic information of spa-
tial features and category features, which are the important
auxiliary for the relationship detection between multiple ob-
jects. On the other hand, traditional methods are adopted to
build dense graph structure, which is computationally expen-
sive and not used to tackle large-scale problems. Meanwhile,
dense graph inference also leads to feature saturation and re-
dundancy and graphical message passing time-consuming.

To solve these problems, we propose a novel and effi-
cient scene graph generation method named Relationship-
aware Primal-Dual Graph Attention Network (RPDGAT) in
this paper. Specifically, based on the object proposals from
Faster-RCNN [6], RPDGAT extracts the comprehensive ob-
ject features, e.g. the spatial and category features, to pre-
serve the high-level semantic information, by which it main-
tains a trainable relationship distance matrix. Afterwards, a
sparse graph with more reliable and semantic connected edges
is constructed for efficient message passing. Meanwhile, we
design the primal-dual graph attention network on the sparse
graph to acquire the feature interactions and extract the com-
plex relationships between multiple objects for graph infer-
ence. Finally, extensive experimental results present our pro-
posed method outperforms the state-of-the-art models for the
PredCls, SGCls, and SGGen tasks on visual genome datasets.

Our contributions are summarized as follows:

• To preserve comprehensive semantic information of
scene graph, we formally deep fuse the appearance,
spatial and category features of objects to mine the in-
herent attributes and the relationships between objects.
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Fig. 1. A brief pipeline of our Relationship-aware Primal-Dual Graph Attention Network.

• To construct the robust graph structure, we design a
trainable relationship distance measure network, which
takes multiple semantic features as the inputs. And
based on the distance matrix, a primal sparse graph can
be screened for efficient message passing and lowering
features redundancy.

• To tackle the sparse graph inference, we propose a
novel primal-dual graph attention network and achieve
the features and weight interactions between dual graph
and primal graph, which mines the contextual cues and
captures the dependencies of objects and relationships.

2. RELATED WORKS

Feature extraction in scene graph. In literature, many re-
searchers took the RoI features as the object features to de-
sign a knowledge model or graph model for learning seman-
tic features and context [9, 10]. Some researchers fuse the
appearance features with other object features. Lu et al. [16]
addressed the semantic relationship information by combin-
ing visual images and linguistic priors to improve relation-
ships detection. Li et al. [13] incorporated the features of
objects, phrases and regions for multi-task joint training. Dai
et al. [12] extracted the individual region features and fused
the spatial information of object and subject regions for pred-
icate features. Tang et al. [11] concatenated the RoIAlign and
spatial features to construct the dynamic tree model. Com-
pared with these superficial fusion ways, our model can mine
comprehensive semantic information with the integration of
the multiple enhanced features.

Graph inference in scene graph. Dense graph has high
computational complexity and could lead to saturation in the
context encoding for graph inference and message passing.
Xu et al. [7] adopted GRU to build the dense graph and mes-
sage passing to improve the accuracy of detection. Lin et al.
[15] proposed a direction-aware message passing module to
extract the direction of dense edges. Sparse graph is an effi-
cient way to enhance the efficiency of features delivery and
alleviates the computation cost. Li et al. [17] proposed to
prune the dense graph by integrating several nodes into a sub-

graph. Besides, Yang et al. [9] proposed a trainable relation
proposal network (RePN) to prune the relationship edges of
graph and preserve the context information by the GAT mod-
ule [18]. Motivated by RePN [9], we propose a novel and
efficient primal-dual graph attention network by constructing
the sparse graph for graph inference.

3. METHODS

3.1. Model overview and problem formulation

To enhance the efficiency of graph inference, we propose a
novel Relationship-aware Primal-Dual Graph Attention Net-
work (RDPGAT) to construct a sparse graph for scene graph
generation. The main structure of RDPGAT is shown in Fig-
ure 1 and its main procedure is summarized into the following
four steps. First, we adopt the Faster-RCNN to locate the key
object proposals in images. Then object features are strength-
ened by fusing and refining multiple features. Besides, we
design a trainable relationship distance matrix for construct-
ing the sparse graph. Finally, a primal-dual graph attention
network is proposed to recognize objects and relationships.

Given a scene graph G, it consists of objects bounding
boxes B, object categories O and relationships R. In our
work, let I , E and G denote an image, the relationships be-
tween objects, and a scene graph, respectively. We decom-
pose the scene graph generation into three parts:

P (G|I) = P (B|I)P (E|I,B)P (R,O|I,B,E), (1)

where P (B|I) generates a series of candidate regions of ob-
jects in images. Similar with [6, 7, 8, 9], we use the off-the-
shelf Faster RCNN framework to obtain these candidate re-
gions. P (E|I,B) indicates the object features fusion, calcu-
lation of relationship distance matrix, and construction of the
sparse graph. P (R,O|I,B,E) classifies objects and predicts
relationships based on primal-dual graph attention network to
generate the entire scene graph.

3.2. Comprehensive semantic features

Given an image, we locate a series of candidate objects by
Faster RCNN and then obtain the object’s position by the ob-



jects bounding boxes B = {b1, b2, ..., bn}. Besides, for each
bounding box bi, the appearance features fai and the proba-
bility distribution pi of the object classes are also extracted.

By the analysis, the comprehensive semantic features,
such as the positions, the class probability, and the appear-
ance features of objects are complementary to the appearance
features and robust to light intensity. Therefore, we convert
the position coordinates and category probabilities into the
corresponding spatial and category features, and further fuse
these three features in scene graph.

To extract the semantic features for individual object or
multiple objects, we first expand the position coordinates of
M × 4 dimensional vectors to M × 16 dimensional vectors
by concatenation, which is a good balance between fidelity
and cost, where M is the number of objects. Then they
are transformed into M × 128 dimensional vectors through a
multilayer perceptron (MLP) to get the spatial feature vector
fsi = MLP (bi||bi), where || is the concatenation. Similarly,
the category features f ci =MLP (pi).

The appearance features fai , spatial features fsi , and cat-
egory features f ci are combined to form a linear sequence:
[(fa1 , f

s
1 , f

c
1), ..., (f

a
M , f

s
M , f

c
M )]. Similar with [8], we sort

these object regions and encode this linear sequence through
a bidirectional LSTM to obtain the object fusion features:

C = biLSTM ([fai , f
s
i , f

c
i ]) , (2)

where C = [c1, c2, ..., cM ] indicates the hidden states in the
last LSTM layer. The fusion features C will be sequentially
decoded to obtain the refined features through LSTM based
on spatial attention mechanisms. The spatial attention mech-
anism enables our model to extract contextual features better
and improve the interpret-ability of the model. The feature
vector Fi, which integrates all information about the i−th ob-
ject in the sequence of the features is:

eti = wT tanh(Waht−1 +Wb(ci, f
s
i ) + ba),

Fi =

M∑
j=1

atjcj =

M∑
j=1

exp(etj)∑M
k=1 exp(e

t
k)
cj ,

(3)

where (ci, f
s
i ) is the encoded context vector of i−th object

and its spatial features; And wT ,Wa,Wb, ba are the parame-
ters, which are estimated during model training;

∑n
i=1 a

t
i = 1

and ati are attention weights. The comprehensive semantic
features Fi implies the inherent attributes of objects and con-
textual features to identify objects and relationships.

3.3. Relationship distance matrix and the sparse graph

As mentioned earlier, a reasonable sparse graph gives more
semantic connections than dense graph. Our model calculates
the potential relationship distances for object pairs to form
the relationship distance matrix and construct a sparse graph
structure for an image.
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Fig. 2. The construction and interaction process of the primal-
dual graph attention network.

Empirically, a reliable sparse graph mainly considers two
aspects: the spatial distance between objects and object cate-
gory. For the spatial distance, closer objects are more likely to
be connected. For the object category, some object categories
have meaningless relationships, such as hats and glasses, even
though the spatial distance between them is usually small.
Conversely, the relationships between some categories are
more likely to exist with longer spatial distance, such as
‘people-play-football’. In summary, the categories of ob-
jects and their corresponding locations are able to determine
whether a meaningful relationship exists between two objects.

We calculate the relationship distance matrix between ob-
jects through category features and spatial features. First, the
spatial features and category features are normalized and con-
catenated forM×256 features. To conveniently calculate the
distance between features and make the parameters learnable,
we use the MLP to compress the features into M × 32 fea-
tures. Finally, we calculate the Euclidean distance for any two
object features to obtainM×M distance matrix, the itemmij

is calculated as:

mij = dE
(
MLP (fsi ||f ci ),MLP (fsj ||f cj )

)
, (4)

where dE donates the euclidean distance function.
After obtaining the distance matrix for all object pairs, we

sort the scores and select the top K object pairs to construct
sparse graph structure, which is with n nodes andK edges, to
improve the robustness of graph and the efficiency of message
passing, and to lower the feature redundancy.

3.4. Primal-Dual graph attention network

In this subsection, we design a primal-dual graph attention
network to solve the sparse graph inference problem. First,
given the primal graph (i.e., the spares graph in Section 3.3),
its dual graph is constructed automatically, in which nodes
represent the relationships in the primal graph. Then, the
features and attention weights based on GAT take multiple
rounds of interactions between the dual graph and the pri-
mal graph. Finally, the model will recognize the objects and
their relationships according to the node features of the pri-
mal graph and dual graph, respectively. The construction and



interaction process of the primal-dual graph attention network
is presented in Figure 2.

Constructing the dual graph. Without loss of generality,
we regard the sparse graph generated by relationship distance
matrix as the primal graph Gp = (np, ep), where np and ep

represent the nodes of the object proposals and the edges of
the relationships between object pairs, respectively. Given the
primal graph Gp, its corresponding dual graph Gd = (nd, ed)
is constructed as follows: (1) Each edge ep in the primal graph
Gp will be a node nd in the dual graph Gd. (2) For two edges
ri and rj , (ri, rj ⊆ ep), if the object node of edge ri is the
subject node of edge rj , then we create an edge edij in Gd

connecting ndi and ndj . Therefore, the dual graph Gd has K
nodes and is a more sparse structure than its primal graph.

Nodes features assignment of the primal and dual
graphs. After extracting the object fusion features Fi and
constructing the graph structures Gp and Gd, we assign the
node-wised features to the corresponding nodes in the primal-
dual graph. For the primal graphGp , the node features hpi are
initialized by using the fused object features Fi, i.e. hpi = Fi.
For the dual graph Gd, to generate the node features hdu, the
features of the subject node Fi and the features of the object
node Fj in Gp will be concatenated sequentially. And then
we adopt to use the fully connected layer to compress the di-
mensionality of Fi and Fj , i.e. hdu = η(Fi||Fj), where η is
the Leaky ReLU and node u in Gd is related with eij in Gp.

Interactions between the primal and dual graphs. To
preserve the more discriminative and robust representations
of the nodes in the primal and dual graphs, we propose to
apply the graph attention network to update the features and
attention weights iteratively by using the interactions between
two graphs. The features of i-th node h

p

i in primal graph are
aggregated and updated as:

h
p
i = σ

 ∑
j∈N(i)

αijW
p
ijh

p
j

 , (5)

where N(i) represents the neighbors of the i-th node, σ is
the activation function,W denotes the learned parameters and
αij is the attention weight and computed as:

αij =
exp

(
η(W d

ua
dh

d
u)
)

∑
v∈E(i)

exp
(
η(W d

v adh
d
v)
) , (6)

where ad is a fully connected layer; h
d

u denotes the u−th
node features in dual graph; and E(i) represents the nodes in
dual graph whose corresponding edges include the i−th node
in primal graph. Then, the node features h

d

u in dual graph are
aggregated and updated as:

h
d′

u = σ

 ∑
v∈N(u)

1

cuv
W d

uvh
p
v

 ,

h
d
u = η

(
h
d′

u ||η(h
p
i ||h

p
j )
)
,

(7)

Table 1. Comparison our model with other state-of-the-art
methods on R@50 and R@100.

SGGen SGCls PredCls
Method R50 R100 R50 R100 R50 R100 Mean

VRD 0.3 0.5 11.8 14.1 27.9 35.0 14.93
IMP 3.4 4.2 21.7 24.4 44.8 53.0 25.25

GRNN 11.4 13.7 29.6 31.6 54.2 59.1 33.27
IMP+ 20.7 24.5 34.6 35.4 59.3 61.3 39.30
Freq 26.2 30.1 32.3 32.9 60.6 62.2 40.72
SMN 27.2 30.3 35.8 36.5 65.2 67.1 43.68

KERN 27.1 29.8 36.7 37.4 65.8 67.6 44.07
VCTree 27.9 31.1 38.1 38.8 66.4 68.1 45.07

GPS 28.4 31.7 39.2 40.1 66.9 68.8 45.85
Ours 28.2 31.7 39.7 40.3 67.1 68.6 45.93

where cuv denotes the normalization factor.
The objects and their related relationships are recognized

by the above model based on these output features. Specifi-
cally, the categories of the detected objects are classified by
the node features of the primal graph, and the relationships
of multiple objects are detected by the node features of dual
graph. Noting that we have added an edge for each node
pointed to itself. Our primal-dual graph attention network
captures the contextual cues and the dependencies of objects
and relationships in graph inference process, which dramati-
cally improves the performance of scene graph generation.

4. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
method on the visual genome datasets from the aspects of
scene graph generation tasks and ablation study compared
with several state-of-the-art methods.

4.1. Experimental settings and evaluation indicators

Dataset. We evaluate our model on the Visual Genome (VG)
dataset [19], which is the largest and most commonly used
benchmark in scene graph generation. VG dataset includes
33877 objects categories and 108077 images in total. Simi-
lar with [7, 8, 9, 10], we select the most frequent 151 object
categories, including background, and 50 predicate relation-
ships as the evaluation criteria. Within these categories and
predicate relationships, an image contains 11.5 objects and
6.2 relations on average. Besides, same as [7], we also adopt
the division method as the pre-processing and data partition-
ing methods in our experiments. We randomly select 70% of
the images as the training set and the remaining 30% of the
images as the test set.

Task settings. Scene graph aims to predict a series of
subject-relationship-object triples and generate the semantic
graph. We evaluate the model through the following three task
setups: (1) Predicate classification (PredCls): given the ob-
ject category and bounding box, the model predicts the rela-
tionship labels; (2) Scene graph classification (SGCls): given



the object bounding box, the model predicts the object cate-
gory and the relationship labels; (3) Scene graph generation
(SGGen): model needs to detect and identify the objects, and
predict the relationship labels.

Evaluation metrics. Similar with traditional models,
R@K is the recall value at top K and usually used as the
main performance metric, which measures the truly recalled
instance among the top K most confident triplet predictions.
Chen et al. [10] proposed to use the mean recall@K (mR@K)
to evaluate the performance of all relationships more com-
prehensively. Therefore, we adopt the Recall@K and mean
Recall@K measures to evaluate our model in experiments,
including R@50, R@100 and mR@50, mR@100.

4.2. Comparison with other state-of-the-art methods

We compare the performance of our model on VG dataset
with the following start-of-the-art methods, such as Visual
Relationship Detection (VRD) model without context [16],
Graph RCNN model (GRNN) [9], Iterative Message Pass-
ing method (IMP) [7] and its improved version (IMP+) [7],
associative embedding model (AE) [14], the best frequency
baseline (Freq) in [8], Stacked Motif Networks (SMN) [8],
Knowledge-Embedded Routing Network (KERN) [10], vi-
sual context tree model (VCTree) [11] and GPS-Net (GPS)
[15]. VRD, IMP, and IMP+ methods use language models,
message passing, and global context to extract relationship
features. Freq method predicts the most frequent relation-
ship between the object pairs who have given the category
label. KERN model fuses the statistical correlation of object
pairs and their relationships with deep neural networks. The
VCTree model fuses the appearance features with the spa-
tial features and constructs a dynamic tree structure. Com-
pared with them, PRDGAT extracts comprehensive semantic
features, composes the robust graph structure, and captures
the dependencies of objects and relationships based on the
Primal-Dual graph attention network.

The comparison results are presented in Table 1, and the
best performance is highlighted in boldface. As shown in Ta-
ble 1, our proposed model outperforms other start-of-the-art
models in most of cases. Although the pipline of our model is
similar to Graph RCNN, our PRDGAT still obtains 12.66%
improvement than Graph RCNN. Because it composes the
robust graph structure and captures the dependencies of ob-
jects and relationships, our model can construct the sparse
graph with more reliable and semantic connected edges than
Graph RCNN models, which is the foundation for graph in-
ference and message passing. Besides, SMN implicitly cap-
tures the statistical correlation between objects by encoding
the global context and obtains 43.68% average Recall per-
formance, which is higher 2.96% than Freq. Noting that the
statistical correlation plays a vital role in scene graph tasks.
Thus, our model gets 45.93% mean recall value, which is
higher about 1.86%, 0.86% and 0.1% than KERN, VCTree

Table 2. Comparison our model with state-of-the-art methods
on mR@50 and mR@100.

SGGen SGCls PredCls
Method mR50 mR100 mR50 mR100 mR50 mR100 Mean

IMP 0.6 0.9 3.1 3.8 6.1 6.8 3.75
IMP+ 3.8 4.8 5.8 6.0 9.8 10.5 6.78
SMN 5.3 6.1 7.1 7.6 13.3 14.4 8.97

KERN 6.4 7.3 9.4 10.0 17.7 19.2 11.67
VCTree 6.9 8.0 10.1 10.8 17.9 19.4 12.18

Ours 7.3 8.5 10.8 11.5 19.2 21.0 13.05

Table 3. Comparison our model with other methods on
mR@50 and mR@100 without graph constraint.

SGGen SGCls PredCls
Method mR50 mR100 mR50 mR100 mR50 mR100 Mean

AE 1.6 2.5 6.0 7.8 15.1 19.5 8.75
IMP+ 5.4 8.0 12.1 16.9 20.3 28.9 15.27
Freq 5.9 8.9 13.5 19.6 24.8 37.3 18.33
SMN 9.3 12.9 15.4 20.6 27.5 37.9 20.60

KERN 11.7 16.0 19.8 26.2 36.3 49.0 26.50
Ours 12.9 17.1 21.8 28.5 39.2 51.0 28.42
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Fig. 3. The mR@50 improvement in PredCls of our model
and KERN on the Top-35 frequency relationships.

and GPS-Net, respectively.
The distribution of different relationships in VG dataset

is uneven and imbalanced. We also use mean Recall@K
(mR@K) to evaluate the performance of relationship iden-
tification. The results of mR@50 and mR@100 on the VG
dataset for the three tasks are shown in Table 2. Our model
also gets the best results under the mR@K measure. Specif-
ically, the average mRecall is 13.05%, a 1.38% improvement
over KERN and a 0.87% improvement over VCTree. For a
more comprehensive comparison, we conduct an extra exper-
iment on mR@50 and mR@100 without graph constraint in
Table 3, which implies that for each pair of objects, all pos-
sible predicates are valid candidates. And our RPDGAT still
achieves outstanding performance in this metric. Hence, our
model also has an obvious effect on long-tailed distribution.
Figure 3 shows the mR@50 improvement in PredCls of our
model and KERN on the Top-35 frequency relationships.

4.3. Ablation study

In our model, we mainly improve the scene graph genera-
tion through three aspects: the fusion and refining of the
multiple comprehensive semantic features (CSF), construct-



Table 4. The results of ablation studies with three different
tasks on R@50 and R@100.

PD- SGGen SGCls PredCls
CSF RSG GAT R50 R100 R50 R100 R50 R100 Mean
X X × 23.7 28.2 33.0 35.0 59.4 62.8 40.35
X × X 27.0 30.5 34.8 35.5 63.2 65.1 42.68
× X X 28.0 31.4 37.9 38.6 66.1 67.9 44.98
X X X 28.2 31.7 39.7 40.3 67.1 68.6 45.93
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Fig. 4. The qualitative results of our model. Green boxes and
arrows indicate the correct results of objects and relationships
predicted by our model, while yellow boxes and arrows in-
dicate that the false and mismatching predicted results. The
blue edges are false positives.

ing the robust sparse graph structures (RSG), and primal-dual
graph attention network (PD-GAT). To study the effective-
ness of these modules, we analyze the impact of each mod-
ule on the model performance in detail through ablation re-
search. We design three different experiments: replacing the
CSF with the ROI features, replacing the SSG with the RePN
in Graph RCNN, and replacing the PD-GAT with the vanilla
GCN [20, 21]. The experimental results of their ablation
study are shown in Table 4 and the three leftmost columns
indicate whether the model uses CSF, SSG, and PD-GAT.

From Table 4, we know that the primal-dual graph atten-
tion network has made the greatest contribution to our model.
Under its influence, the performance of the model has in-
creased from 40.35% to 45.93%, which demonstrates that the
contextual cues and dependencies of objects and relationships
play a vital role in scene graph generation. Besides, the robust
sparse graph generates more reasonable edges for efficient
message passing, and it gets 3.25% increase than other prune
structure. Meanwhile, the model extracting comprehensive
semantic features increases the mean score by 0.95% com-
pared with ROI features. Figure 4 shows the qualitative re-
sults of our model. The results in Figure 4 also verify that our
proposed model can distinguish the accurate and meaningful
relationships between multiple objects and identify their cor-
responding relationship labels.

5. CONCLUSION

In this paper, we propose a novel Relationship-aware Primal-
Dual Graph Attention Network (RPDGAT) to address some
shortcomings of traditional scene graph generation. Specif-
ically, the comprehensive semantic features are extracted to
consolidate the inherent attributes of objects. Besides, the ro-
bust sparse graph is automatically built to achieve efficient
graphical message passing. Furthermore, the primal-dual
graph attention network is designed for sparse graph infer-
ence, which captures contextual cues and the dependencies
of objects and relationships. Finally, the experimental results
validate the effectiveness of our RPDGAT on real-world vi-
sual genome datasets. In the future, we plan to extend our
method to apply into the practical areas, such as image re-
trieval [1] and VQA [3].
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