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ABSTRACT

Transfer subspace learning aims to learn robust subspace for
the target domain by leveraging knowledge from the source
domain. The traditional methods often adopt the convex norm
to approximate the original sparse and low-rank constraints,
which make the optimization problem be easily solved. How-
ever, such relax approximation leads to the performance de-
viation of the original non-convex model. In this paper,
we propose a novel Non-convex Transfer Subspace Learn-
ing (NTSL) method to provide a tighter approximation to
the original sparse and low-rank constraints. Specifically,
we design an objective function that leverages the Schatten
p-norm and {3 ,-norm to preserve the structure between the
source and target domains. With Schatten p-norm, the ob-
jective function better approximates the rank minimization
problem than the nuclear norm and preserves the structure
of domains. Besides, the {5 ,-norm can reduce the effect of
noise and improve the robustness to outliers. Meanwhile, we
develop an efficient algorithm to solve the non-convex min-
imization problem. Extensive experimental results on cross-
domain tasks show the effectiveness of our proposed method.

Index Terms— Domain adaptation, Subspace learning,
Non-convex optimization, Schatten p-norm, Low-rank model

1. INTRODUCTION

The lack of labeled data and the price for labeling samples
drive people to use labeled and relevant data from another dis-
tinct database or domain. The urgent needs boost the develop-
ment of domain adaptation. Unsupervised domain adaptation
aims at training classifiers with samples from source domain
and then applies classifiers to unlabeled samples from target
domain [1]. In unsupervised domain adaptation, the direct
application of traditional statistical learning models proba-
bly obtains unsatisfactory performance due to the distribution
shift problem, which is caused by the different distribution
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between domains. The transfer subspace learning approaches
are proposed to tackle the distribution shift problem.

Recently, transfer subspace learning shows its potential in
unsupervised domain adaptation. The basic approaches for
transfer subspace learning seek subspace where the distribu-
tion divergence between domains gets decreased [2, 3] or the
relationship among distributions are modeled [4, 5, 6, 7]. In
the literature, there are two main ideas for transfer subspace
learning. The first idea is based on manifold learning, which
could effectively extract the global and local structure of data
in domains. For instance, Geodesic Flow Kernel (GFK) [3]
finds a geodesic from the source domain to the target domain
based on the kernel methods. The other idea is based on the
statistical feature alignment on the low dimensional subspace,
which minimizes the divergence between two distributions.
In this paper, we focus on the second type of transfer sub-
space learning methods.

Among the second type of methods, there are many trans-
fer subspace learning methods, such as Transfer Subspace
Learning (TSL) [2], Subspace Alignment (SA) [4], Low-rank
Transfer Subspace Learning (LTSL) [5], and so on. TSL and
SA, which are two representative methods of them, adopt sub-
space learning to obtain the statistical alignment of source do-
main and target domain. However, due to the lack of low-rank
and sparse constraints, the alignment of source domain and
target domain may be not robust under noise [5, 8]. Many
studies [5, 6, 7, 9, 10] find that importing the low-rank and
sparse constraints into transfer subspace learning could effec-
tively improve the performance of domain adaption. Shao et
al. [5] gave a concise proof of the boundary of the objec-
tive function for low-rank transfer subspace learning. Fur-
thermore, Xu et al. [6] used the ¢;-norm sparse constraint to
obtain the impressive improvement. The ideal low-rank and
sparse constraints can be solved by the minimization of the
rank and the /> g-norm. However, they are well known NP-
hard problems and difficult to solve directly [11, 12]. There-
fore, to solve the optimization problem efficiently, these tra-
ditional methods adopt nuclear norm and ¢5 ;-norm to replace
them, respectively. And then they obtain the approximate op-
timal solution by solving the relaxed convex objective func-



tions [13, 14]. Although these models have exhibited promis-
ing results, there is still room for improvement, mainly be-
cause the relaxation for these methods may result in the seri-
ous deviation from the original solution [15, 16].

In this paper, to approximate the original low-rank and
sparse model better, we propose a novel model named Non-
convex Transfer Subspace Learning (NTSL). NTSL preserves
the structural information of different domains by using non-
convex Schatten p-norm and /{5 ,-norm. By analysis, the
Schatten p-norm and {5 ,,-norm are the closer approximation
to the low rank and sparsity of a matrix than the nuclear norm
and /5 ;-norm respectively when p < 1. When p — 0, our re-
laxation is more robust and effective than the traditional low-
rank transfer subspace learning methods, which is a special
case of our methods for p = 1. Therefore, our NTSL can ob-
tain a tighter approximation of original low-rank and sparse
constraints, which help us achieve better performance. We
derive an efficient algorithm based on ADMM [17] to solve
our formulated non-convex problem (when p < 1). In addi-
tion, we give a theoretical analysis on the computational com-
plexity. Experiments on real-world datasets present that our
non-convex method improves the accuracy of visual domain
adaptation comparing with the-state-of-art methods.

‘We highlight the contributions of this paper as follows:

e We propose a novel Non-convex Transfer Subspace
Learning method (NTSL) to obtain a better reconstruc-
tion and transformation between different domains.
NTSL can adaptively adjust the relaxation of low-rank
and sparse constraints.

To optimize the new objective function, we derive an
efficient algorithm based on ADMM and give the theo-
retical analysis.

Extensive experiments on four typical cross-domain
datasets illustrate the effectiveness and superiority of
our proposed method.

2. PRELIMINARIES

In this work, we denote X, € R"*™s and X, € RI*™
as the source and target data matrix respectively, where [ is
the dimension of each sample. While ns and n, are the cor-
responding number of samples in domains. Denote low-rank
transformation matrix by P € R**“ and reconstruction ma-
trix by Z € R™*"t, where d is the dimension of discrim-
inative subspace. Let E € R%*™ be the sparse noise ma-
trix. Matrices are written as boldface uppercase and vectors
as boldface lowercase. For matrix M, the i, j-th entry, the i-
th row, the i-th column of matrix M are respectively denoted
by M, ;, m?, and m;. In addition, M ", M7 and Tr (M)
represent the inverse, transpose and trace of M respectively.

The {3 ,-norm and Schatten p-norm (0 < p < c0) have
been successfully applied in the subspace learning [15, 18],
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both of which are non-convex norm. The ¢ ,-norm of a ma-

trix M € R"*"™ is defined as:
R™*™ is defined as .
P z %
(")
i=1
Schatten p-norm is the trace norm. For p = 0, the Schatten

n »
i||P
M|, £ <Z ||mz|2>
i=1
min{n,m}
where o; is the i-th singular value of matrix M .
0-norm is the rank.

2

n m %
= (D2 (D] 1M,

i=1 \j=1

The Schatten p-norm (0 < p < o0) of a matrix M €
| M Hsp = Z of
Note that, when p = 1, the 5 ,-norm is {5 ;-norm and the
3. NON-CONVEX TRANSFER SUBSPACE
LEARNING METHOD

3.1. Problem Formulation

Transfer subspace learning seeks to learn the projection
that reconstructs common subspace where the distributions of
source data and target data approaches the same independent-
identical-distribution. To begin with, we give the basic as-
sumption and define the basic problem.

The classical methods assume that samples in source do-
main X ¢ and target domain X lie in a union of com-
mon subspace, in which the target data can be linearly rep-
resented by source data. Such basic assumption has been
adopted by many transfer subspace transfer learning meth-
ods [4, 5, 6,7,9, 10]. Based on the assumption, we can re-
construct the target data by the source data in the common
subspace. Hence, we have the following basic problem.

Basic Problem: Given the source data matrix X, and
target data matrix X, the optimal goal is to find a subspace
Z to linearly represent test data X, by train data X in a
union of discriminative subspace P. The optimal problem is
formally given by:

argmin F'(P, X ;) + Arank(Z)
zZ,P (1)
st. PTX, = PTX,Z,
where F'(P, X ) is a general learning function for the dis-
criminative subspace P. The learning function could be spe-
cific according to different subspace learning methods. Ac-
cording to Theorem 2 in [5], the F'(P, X ;) is lower bounded
by F'(P, X ) with a small error term, which guarantees the
performance of the learned subspace P.

The basic model has two main limitations. First, it as-
sumes that there is no data noise and the target data can be cor-
rectly represented by the source data in the common subspace.
Obviously, this is a strong assumption in many real-world ap-
plications. Second, the traditional approach to imposing low-
rank constraint is to use the trace norm as the relaxation of



corresponding constraint. The convex norm results in serious
deviation from the original problem.

Transfer

. 3
..X,_ Source

&
Schatten p-norm i

e

P'X, Z £ = P'X;
Fig. 1: Framework of the proposed method. The low-rank and
sparse constraints are closely approximated by non-convex

norm. Some elements in this figure are similar to [5].
Our model: We import the error term E to reduce the

noise during the transfer subspace learning. Meanwhile, we
use the minimization of || E|, , to directly encourage E to
be sparse in rows. There are many norms to match the noise
term. We suppose the noise is sample-specific, which means
some samples in the source domain are noises or outliers and
the others are enough clean for successful transfer learning.
Based on the assumption, we need to ensure E is sparse in
rows in order to make it more robust to sample-specific noises
and outliers. In addition, we reserve the low-rank constraint
on matrix Z. The benefit of low-rank reconstruction (LRR)
is two-fold. First, the LRR has more robustness to data noise
and corruption than the direct subspace alignment. Second,
the LRR can satisfy the block-wise structure of matrix Z,
which encourages the target samples to be reconstructed by
its neighbor in the source domain. Formally, we have
argﬁin F(P,Xs)+ A [|E||y + Aorank(Z)

st. P’X, = P"X.Z+E.

= +

@

The problem (2) is difficult as rank minimization and /5 o-
norm minimization are both NP-hard. The traditional transfer
subspace learning methods use the convex norm minimization
to relax the low-rank and sparse constraints, which results in
deviation from the original solution. In this paper, we use
Schatten p-Norm and /5 ,-norm as non-convex envelopes of
the rank and ¢ o-norm. The value of p is selected in (0, 1].
When p is close to 0, the Schatten p-Norm || X || s, is a closer
approximation to the rank of X than trace norm. Compared to
5, 1-norm, f3 ,-norm could enforce more sparsity on the row
of E for p — 0, hence {5 ,-norm is more robust to outliers.
PCA is an effective and efficient subspace learning methods.
We replace the learning function F'(P, X;) with PCA to im-
prove computing efficiency. The framework of our method is
shown in Fig. 1. We rewrite problem (2) as follows:

argmin Tr (—PT2P> + A IENS, + A2 1218

Z.p

st PTX, =PT"X,Z+E, P'P=1,
where ¥ is the data covariance matrix. After solving Z and
P, we could respectively use the projected source and target
data matrix as training samples and test samples. It is obvious
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that problem (3) can be transformed into problem (1) when
the parameter \; is relatively lager than parameter Ao. Thus,
the performance of our learned discriminative subspace P is
guaranteed by Theorem 2 in [5].

3.2. Algorithm for Solving the Optimization Problem

Optimization problem in formula (3) is non-convex. We
use the ADMM to iteratively update each variable by fixing
other variables. We can convert formula (3) into following
augmented Lagrange multiplier function L:

£= T (=PTSP) + M | Bl + 2 T]5,
n <Y1, PTX,-PTX.Z - E>

+{Ys Z-J)+ (Y, PP T) )

2
+ ’5‘ HPTXt _PTX.Z - EHF + g [

2
4+ B HPTP _ IH .
2 F

The main steps of solving (4) are as follows.

Step 1 (Fixing Z, E J and Optimizing P): When fix-
ing Z, E J, the problem (4) is equivalent to minimize the
following formulation:

L(P)= Tr (—PTEP> n <Y1, PTX, - PTX,Z - E>
+ <Y3, PTP_ I> n g HPTXt -PTX,7 - EH?

Take the derivative of £ w.r.t P and set to zero, we can get
the optimal solution of P by solving the Sylvester equation:

X,-X.Z2)(XT-Z"XxT) -2\ P
{nx ) (x? -empe o
+2PY = (X, - X, Z)(uE-Y)".

After updating matrix P, we calculate an orthonormal ba-
sis for the range of P and assign it to P.
Step 2 (Fixing P, E J and Optimizing Z): Take the
derivative of £ w.r.t Z and set to zero, we can obtain:
—J + —

2)-"

where the operator * represent the matrix multiplication.
Step 3 (Fixing P, Z E and Optimizing J): When fixing
P, Z, E, the problem in Eq. (3) is simplified as:

Z-(1+XTPP"X,) =

Y Y
X;FP<PTX,‘,7E+—1>7( >
m

)

where G = Z + Y—f’ Eq. (7) is equivalent to problem (12) of
[16], which gives details for the solution.
Step 4 (Fixing P, Z, J and Optimizing E): When fixing

1 2 | A2
-|J-G =T,
argmin. o | e+ = 1 1ls,



P, Z, J, the problem in Eq. (3) is simplified as:
®)

where H = PTX, - PTX,Z + % The problem (8) can
be separated into multiple sub-problems for each row of E:
s + Al ©

According o the Cauchy-Buniakowsky-Schwarz inequal-
ity, we have following inequality:

et Rt < [le'], [[h°]],- (10)

The condition for equality is e; and h; share the same
direction, or the length of e; or h; equals zero. Thus, we have
following inequality: 3 ||e’ — hin > 1 (|le']], - ‘hiH2)2.
Therefore, the objective function in problem (9) is minimized
when e™* = ”ei ; (hz/ Hh’iHQ), where HelH; is the optimal
solution for the following problem:

1 2 A
in - —H|5%+—=|E|P.,
argmin. o IE [I% | Hz,p»

argrznin % Hei —h

1 i il \2 i||P
argmin 3 (le'l, = ).+
et|l,

Eq. (11) is similar to problem (11) in [16]. The details of
the algorithm can be find in [16].

Step 5 (Update Multiplier Y1, Yo, Y3 and Parameter
p):Multipliers Y1, Y2, Y5 and Parameter p are updated by
using (12),

Y, =Y, +u(P"X, - P'X,Z - E),
Y2 :Y2 +M(Z* J),
Y3=Ys+u(P'P—1),

= min(@p, fimax)-

In summary the procedure of solving problem (3) is sum-
marized in Algorithm 1.

at)

(12)

3.3. Computational Complexity

The time-consuming components of Algorithm 1 are the
solution of Sylvester equation, orthonormal basis, matrix
multiplication, matrix inverse, and SVD computation. Sup-
pose the X ¢ and X are m x n matrices. The number of iter-
ations and deduced dimension are respectively denoted by N
and d. There are k multiplications. The computational com-
plexity of classical solution for Sylvester equation is O(m?).
The computational complexity of calculating orthonormal ba-
sis is O(md?). The general complexity of matrix multiplica-
tion is O(km3) and the complexity of inverse of a n x n ma-
trix is O(n?). The complexity of SVD computation of G is
O(n?). The total the computation complexity of Algorithm 1
is N((k + 1)O(m?) + 20(n?) + O(md?)).

4. EXPERIMENTS

4.1. Datasets Description

Office + Caltech Data Set: The Office + Caltech dataset
is a popular dataset for transfer learning with 10 sharing cat-
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Algorithm 1: Solving Problem (3) by ADMM
Input: X, X, A, Ao, p.
Qutput: P.
while not converged do
Update P by solving Eq. (5);
Calculte Z by Eq. (6);
Update J by the optimal solution to problem (7);
Update E by the optimal solution to problem (8);
Calculte Multiplier and Parameter by Eq. (12) ;
Check the convergence conditions:
< €,

|PTX. - P"X.2 - E| f
1Z = Tline < € | Prew — Powllis < €

N A N AW N =

end
return F;.

8
9

egories, which contains four domains: Amazon (A), Web-
cam (W), DSLR (D), and Caltech (C). The 4,096 DeCAF6
features for Office + Caltech dataset are used [19]. We obtain
12 pairs of dataset like C—A, A—D, D—W, and so on.

Yale B + CMU PIE Data Set: The Yale B and CMU PIE
are popular datasets in the field of face recognition. We use
the 30x30 Yale B + CMU PIE Data Set released in [5]. In
this experiment, we have two cross-domain datasets: P—Y
and Y—P.

USPS + MNIST Data Set: USPS (U) and MNIST (M)
are popular digits recognition datasets. We adopt the public
16x16 USPS + MNIST dataset released by Long et al. [20].
We obtain two domain adaptation tasks: U—M and M—U.

COIL 20 Data Set: The COIL 20 dataset contains 20
classes with 1440 object recognition images in 32x32. We
also adopt the public COIL 20 dataset released by Long et
al. [20], which consists of COIL1 and COIL2 taken in differ-
ent directions. We have two tasks: C1—C2 and C2—Cl.

4.2. Comparison Methods

To show the effectiveness of NTSL, we choose seven
related comparison methods, which is from three cate-
gories:  distribution alignment, transfer subspace learn-
ing without low-rank and sparse constraints and trans-
fer subspace learning with constraints, including Principal
Component Analysis (PCA), Transfer Component Analy-
sis (TCA) [21], Geodesic Flow Kernel (GFK) [3], Subspace
Alignment (SA) [4], Transfer Subspace Learning (TSL) [2],
Low-rank Transfer subspace Learning (LTSL) [5], and Dis-
criminative Transfer Subspace Learning via Low-Rank and
Sparse Representation [6], which is marked as DTSL. TCA
learns the transfer components across domains through mini-
mization of Maximum Mean Discrepancy (MMD) in the Re-
producing Kernel Hilbert Space (RKHS) by using an explicit
low-rank representation. SA directly obtains a mapping func-
tion which aligns the source subspace with the target one
without the low-rank and sparse constraints. The main idea



of GFK, TSL and LTSL are summarized in Section 1. Similar
to LTSL, DTSL also imposes joint low-rank and sparse con-
straints on the reconstruction coefficient matrix by using the
nuclear norm and ¢ -norm.

4.3. Implementation Details

For PCA, SA, TCA, TSL, LTSL, DTSL and NTSL, we
use the transformation matrix to project source and target data
matrix, after which, we use the projected source data matrix
as training samples and target data matrix as test samples. We
applied INN as the classifier. For GFK, 1NN is applied after
we obtain geodesic flow kernel. The general subspace learn-
ing methods for TSL and LTSL are PCA. The parameters of
comparison methods were initialized and tuned according to
the corresponding papers to obtain optimal performance. For
the transfer tasks not tested, we use the grid-search strategy
to obtain the optimal parameter. Specially, we need to tune
three parameters in NTSL: A{, Ao, and p. The parameter p is
searched in [0.1,0.2,-- - , 1.4, 1.5]. The search ranges for \;
and \g are [2,4, - -+, 18,20] and [0.01,0.05,0.1,0.5, 1, 5, 10]
respectively. Similarly, we also search the optimal dimension
for different methods on different datasets.
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0.3 0.5¢
g4}
302 <03}
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0.1 0.1}
[~ Pt 0.0
00020 60 80 100 0 5 101520253035 40455055 60
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(a) CMU PIE vs. Yale B (b) Yale B vs. CMU PIE
0.6
04}
Q
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#dimension #dimension
(c) USPS vs. MNIST (d) MNIST vs. USPS
Fig. 2: Classification Accuracy (Acc) results on different di-
mensions on four transfer tasks: P—Y, Y—P, U—-M, and
M—U. Note that we also choose the optimal dimension for
different methods on other tasks.

10 20 30 40 50 60 70 80

4.4. Experimental Results

To choose the optimal dimension for different methods,
we conduct experiments on different dimensions and use op-
timal dimensions for different methods in classification tasks.
We plot the accuracy curves under different dimension for
four tasks: P—Y, Y—P, U—M, and M—U in Fig. 2. The ac-
curacy of all methods goes up as the dimension increasing and
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Table 1: Classification accuracy (%) for all methods on the
Office + Caltech, Yale B + CMU PIE, USPS + MNIST, and
COIL 20 DataSet.

[Methods| PCA | TCA[GFK | SA | TSL [LTSL|DTSL[NTSL|

C—A [86.089.989.4[87.0[90.2] 89.5 | 91.4 | 89.8
CoW |74.3|78.6|75.6|71.6| 783 | 79 | 78.6 | 83.3
C—D |81.7|82.8[87.3[80.5/84.7| 86 | 89.8 | 86.6
A—C | 789797 |79.7 |7184| 835 | 82.2 | 85.1 | 81.7
AW | 73.1 763 [68.1 (693|715 719 | 756 | 762
A—D | 724873 77.1 759803 | 79.6 | 83.4 | 82.8
WoC | 723|774 [ 73.6 (147|745 | 745 | 7125 | 747
WA |75.0 | 83.8|77.5|77.1| 7188 | 789 | 72.1 | 826
W—D [100.0[100.0[100.0(99.6(100.0/100.0| 100.0 | 100.0
D—C |73.7| 793 | 77.6 [76.1| 79.0 | 793 | 745 | 78.7
DA | 80.3 | 89.1|83.782.6/85.5 | 86.3 | 82.3 | 88.2
D—W | 953 [98.6|99.3(99.3/99.7]99.3 | 99.3 | 99.7
P—Y |22933.7|31.2(28.7] 21.5 | 34.8 | 36.2 | 38.7
Y—P |47.5]61.7]523 (523 469 | 66.0 | 68.6 | 72.8
U—M [53.8[51.046.5(54.0[44.6 ] 55.2 | 56.6 | 58.8
M—U | 662|549 67.2(662]66.1|66.7 | 67.3 | 69.7
C15C2|88.1]88.6]84.484.6| 84.6 | 85.7 | 89.9 | 87.9
C2—Cl1|88.0| 86 | 84.2(82.9]83.8 822 89.3 | 885

[Average[73.9[77.7]75.3[74.5] 752 77.7] 78.5 | 80.1 |

finally flattens out. Generally speaking, NTSL outperforms
the most of comparison methods under different dimension.

Based on the optimal dimension, we conduct experiments
ten times at random for each cross-domain task and method.
The average classification accuracy on different tasks for all
methods is recorded in Table 1.

From Table 1, we can make three key observations as fol-
lows. To begin with, we can find that the traditional subspace
learning methods like PCA do not obtain comparable perfor-
mance to that of transfer subspace learning methods. The
performance gap between PCA and transfer subspace learn-
ing methods validates the hypothesis that reducing divergence
between domains through subspace learning can improve the
accuracy of transfer learning.

Secondly, although the employment of subspace learning
to reduce divergence can improve the performance of domain
adaptation, transfer subspace learning methods with low-rank
and sparse constraints like LTSL, DTSL, and NTSL can bet-
ter reduce divergence between domains when compared with
the method without constraints like TSL and direct subspace
alignment method like SA. In this experiments, TSL captures
divergence without the reconstruction from the source domain
to the target domain. SA directly learns a linear transfor-
mation to realize the subspace alignment. Thus, the learned
transformed matrix from TSL and SA may be not so efficient
as the expectation. Therefore, by low-rank reconstruction
and importing sparse constraint for subspace learning, LTSL,
DTSL, and NTSL obtain additional improvements.

Thirdly, as shown in Table 1, our method NTSL out-




performs all the transfer subspace learning methods (TSL,
LTSL, DTSL). Although low-rank reconstruction and import-
ing sparse constraint are useful, the performance can vary de-
pending on how the constraints are utilized and relaxed. In
our model, we propose the joint Schatten p-norm and /s ;-
norm minimization, which allows constraints to be approxi-
mated by a closer problem, which can lead to a better per-
formance according to the results. The leverage of Schatten
p-norm and {5 ,,-norm in objective function can reduce the de-
viation from the real solution and handle the outliers pursuit.

Overall, the performance of distribution alignment
method (TCA), Grassmann manifold-based method (GFK),
and convex norm-based transfer subspace learning meth-
ods (LTSL, DTSL) were generally worse than NTSL. Com-
pared to the best comparison method (DTSL), our approach
gains 2.0% improvement on average based on a wide range
of image data sets. The NTSL outperforms all other transfer
subspace learning methods in 8 tasks out of 18 tasks and is
the only one with an average accuracy of more than 80%.

4.5. Parameter Sensibility and Convergence Analysis

There are three parameters in our objective function: p,
A1, and Ao. To demonstrate the effects of these parameters,
we first plot the contour figure for parameter A\; and Ao and
then test the effect of parameter p on task C—A. The results
are shown in Fig. 3. We can find that our method is robust to
different parameter settings within a feasible range. Specially,
the curve of parameter p in Fig. 3(b) validates that a smaller

p generally obtains a closer relaxation and better prediction.
20

Acc 90.0
18 89. 80
16 89. 51
14 89.22  89.51
L2 88.94
S0 88.65 S |
3 88.36 < 890
P 88. 08
4 87.79 88.5F
> 87. 50
001 01 1 880 05 Lo Ls
Al P
(@) A\ and Ao ®)p

Fig. 3: Parameter sensitivity analysis on Caltech vs. Amazon.

We run our method for 100 iterations on two tasks and
draw the convergence curve of the objective function values
and the classification accuracy in Fig. 4. Basically, the value
of objective function decreases as the number of iterations go-
ing up. The accuracy of recognition varies rapidly and con-
verges within the 50 iteration, which shows that NTSL has a
good convergence property.

5. CONCLUSIONS

To preserve the structural information between domains
better, we propose a novel unified Non-convex Transfer Sub-
space Learning (NTSL) model by integrating Schatten p-
norm and {s p-norm in this paper. Meanwhile, to solve
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o x10" 8 ]
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o o
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1 ~ 10000 5
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[=] [=]
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(a) P—Y (b) U=M

Fig. 4: Convergence sensitivity analysis for NTSL on two
transfer tasks: P—Y and U—M.

our non-convex minimization problem, an efficient algorithm
is developed. Finally, experimental results on popular do-
main adaptation datasets demonstrate the effectiveness of our
method. In the future, we plan to extend our NTSL to handle
the cross-class distribution divergence on the subspace.

References
[1] Sinno Jialin Pan and Qiang Yang, “A survey on transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359,
2010.
Si Si, Dacheng Tao, and Bo Geng, “Bregman divergence-based regularization for
transfer subspace learning,” [EEE Transactions on Knowledge and Data Engi-
neering, vol. 22, no. 7, pp. 929, 2010.
Boging Gong, Yuan Shi, Fei Sha, and Kristen Grauman, “Geodesic flow kernel
for unsupervised domain adaptation,” in CVPR. IEEE, 2012, pp. 2066-2073.
Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars, “Unsu-
pervised visual domain adaptation using subspace alignment,” in Proceedings of
the IEEE international conference on computer vision, 2013, pp. 2960-2967.
Ming Shao, Dmitry Kit, and Yun Fu, “Generalized transfer subspace learning
through low-rank constraint,” International Journal of Computer Vision, vol. 109,
no. 1-2, pp. 74-93, 2014.
Yong Xu, Xiaozhao Fang, Jian Wu, Xuelong Li, and David Zhang, “Discrimi-
native transfer subspace learning via low-rank and sparse representation,” [EEE
Transactions on Image Processing, vol. 25, no. 2, pp. 850-863, 2016.
Zhengming Ding, Ming Shao, and Yun Fu, “Latent low-rank transfer subspace
learning for missing modality recognition.,” in AAAI 2014, pp. 1192—-1198.
Zhengming Ding and Yun Fu, “Low-rank common subspace for multi-view learn-
ing,” in ICDM. 1EEE, 2014, pp. 110-119.
I-Hong Jhuo, Dong Liu, DT Lee, and Shih-Fu Chang, “Robust visual domain
adaptation with low-rank reconstruction,” in CVPR. IEEE, 2012, pp. 2168-2175.
Parvin Razzaghi, Parisa Razzaghi, and Karim Abbasi, “Transfer subspace learn-
ing via low-rank and discriminative reconstruction matrix(in press).” Accessed
online:https://doi.org/10.1016/j.knosys.2018.08.026, 2018.
Chen Xu, Zhouchen Lin, and Hongbin Zha, “A unified convex surrogate for the
Schatten p-norm norm.,” in AAAL 2017, pp. 926-932.
Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding, “Efficient and robust
feature selection via joint £2 1-norms minimization,” in Advances in neural in-
formation processing systems, 2010, pp. 1813—1821.
Jun Liu, Shuiwang Ji, and Jieping Ye, “Multi-task feature learning via efficient
£2,1-norm minimization,” in Proceedings of the twenty-fifth conference on uncer-
tainty in artificial intelligence. AUAI Press, 2009, pp. 339-348.
Bamdev Mishra, Gilles Meyer, Francis Bach, and Rodolphe Sepulchre, “Low-
rank optimization with trace norm penalty,” SIAM Journal on Optimization, vol.
23, no. 4, pp. 2124-2149, 2013.
Zhao Zhang, Mingbo Zhao, Fanzhang Li, Li Zhang, and Shuicheng Yan, “Ro-
bust alternating low-rank representation by joint £,,-and €2 ;,-norm minimiza-
tion,” Neural Networks, vol. 96, pp. 55-70, 2017.
Feiping Nie, Hua Wang, Xiao Cai, Heng Huang, and Chris Ding, “Robust matrix
completion via joint Schatten p-norm and £,-norm minimization,” in ICDM.
IEEE, 2012, pp. 566-574.
Zhouchen Lin, Risheng Liu, and Zhixun Su, “Linearized alternating direction
method with adaptive penalty for low-rank representation,” in Advances in neural
information processing systems, 2011, pp. 612—620.
Hengmin Zhang, Jian Yang, Fanhua Shang, Chen Gong, and Zhenyu Zhang,
“LRR for subspace segmentation via tractable Schatten-p norm minimization and
factorization,” IEEE Transactions on Cybernetics, 2018.
Jindong Wang, Wenjie Feng, Yigiang Chen, Han Yu, Meiyu Huang, and Philip S
Yu, “Visual domain adaptation with manifold embedded distribution alignment,”
in MM. ACM, 2018, pp. 402—410.
Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and S Yu Philip,
“Transfer feature learning with joint distribution adaptation,” in /CCV. IEEE,
2013, pp. 2200-2207.
Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang, “Domain adap-
tation via transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199-210, 2011.

[2]

[3]
[4]

[51

[6]

171
[8]
[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]



